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Abstract: Given an N = 2 superconformal field theory, we reconsider the Schur

index IL(q) in the presence of a half line defect L. Recently Cordova-Gaiotto-Shao

found that IL(q) admits an expansion in terms of characters of the chiral algebra

A introduced by Beem et al., with simple coefficients vL,β(q). We report a puzzling

new feature of this expansion: the q → 1 limit of the coefficients vL,β(q) is linearly

related to the vacuum expectation values 〈L〉 in U(1)r-invariant vacua of the theory

compactified on S1. This relation can be expressed algebraically as a commutative

diagram involving three algebras: the algebra generated by line defects, the algebra of

functions on U(1)r-invariant vacua, and a Verlinde-like algebra associated to A. Our

evidence is experimental, by direct computation in the Argyres-Douglas theories of type

(A1, A2), (A1, A4), (A1, A6), (A1, D3) and (A1, D5). In the latter two theories, which

have flavor symmetries, the Verlinde-like algebra which appears is a new deformation

of algebras previously considered.ar
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1 Introduction

This paper describes a puzzling new feature of the line defect Schur index in N =

2 theories, introduced in [1] and recently reconsidered in [2]. In short, there is an

unexpectedly close relation between:

• the Schur index in the presence of a supersymmetric (half) line defect L,

• the vevs 〈L〉 in U(1)r-invariant vacua of the theory compactified on S1.

The precise statements and some discussion appear in §1.7-§1.9 below; the intervening

sections provide the necessary notation and background.

1.1 Schur indices and chiral algebras

In [3] a novel correspondence between 4d N = 2 SCFT and 2d chiral algebras was

discovered: given an N = 2 SCFT, there is a corresponding chiral algebra A. The

operators in the vacuum module of the chiral algebra A correspond to local operators

in the original N = 2 theory which contribute to the Schur index I(q) (and Macdonald

index1).

The algebras A corresponding to Argyres-Douglas theories have been intensively

studied in e.g. [3, 5–11]. In particular, the chiral algebra for the (A1, A2N) Argyres-

Douglas theory2 was conjectured to be the Virasoro minimal model with (p, q) =

(2, 2N + 3), and the chiral algebra for (A1, D2N+1) Argyres-Douglas theories was con-

jectured to be ŝl(2)k at level k = −4N/(2N+1). The Schur indices for certain Argyres-

Douglas theories have been computed and indeed match the vacuum characters of the

corresponding 2d chiral algebra [2, 6, 7, 11].

1Macdonald index and its relation to chiral algebra was studied in [4].
2Here and below we use the taxonomy of Argyres-Douglas theories from [12], in which they are

labeled by pairs of ADE type Lie algebras. Argyres-Douglas theories were first discovered in [13, 14].
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1.2 Schur indices with half line defects and Verlinde algebra

In [2] this story was extended to include the non-vacuum characters of the chiral algebra

A, by considering a new Schur index IL(q), which counts operators of the N = 2 SCFT

which sit at the endpoint of a supersymmetric “half line defect” L. In various examples,

[2] found that IL(q) can be expressed as a linear combination of characters associated

to modules for the algebra A:

IL(q) =
∑
β

vL,β(q)χβ(q) (1.1)

where χβ(q) are the characters, and vL,β(q) are some simple Laurent polynomials in q,

with integer coefficients.

In the expansion (1.1), the index β is running over some finite collection of modules,

which moreover are closed under a canonical action of the modular S matrix. This being

so, we can use the Verlinde formula to define a commutative and associative algebra V ,

generated by the “primaries” Φβ corresponding to the modules with characters χβ(q),

with product laws of the form

[Φβ]× [Φα] = cγβα[Φγ]. (1.2)

In (A1, A2N) Argyres-Douglas theories this commutative product corresponds to the

true fusion operation in the (2, 2N+3) Virasoro minimal model. More generally though,

we do not claim to interpret this product as any kind of fusion operation: we just use

the formal rule provided by the Verlinde formula. In the following we will often refer

to these product laws as modular fusion rules3 of the Verlinde-like algebra V .

Now, let us return to the expansion (1.1) and specialize the coefficients vL,β(q) to

q = 1, defining

VL,β = vL,β(q = 1). (1.3)

Then for every line defect L we get an element f(L) ∈ V by

f(L) =
∑
β

VL,β[Φβ]. (1.4)

Remarkably, [2] found evidence that this map is actually a homomorphism of commu-

tative algebras,

f : L → V (1.5)

where L is the commutative OPE algebra of line defects in the original N = 2 theory.

3We thank Christopher Beem for suggesting us to make a distinction from the true fusion rules.
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f always maps the trivial line defect to the vacuum module, since the Schur index

without any line defect insertions is the vacuum character of A. Thus the fact that the

trivial line defect is the identity in the OPE algebra gets mapped to the fact that the

vacuum module is the identity in the Verlinde algebra V .

Evidence for the homomorphism property of the line defect Schur index was ob-

served in [2] in the (A1, A2) and (A1, A4) theories. In §5.4 below we give evidence that

the same is true in the (A1, A6) theory. We also extend to the (A1, D3) and (A1, D5)

theories, in §6.1 and §6.2, but this involves a little twist: see §1.8 below.

1.3 A simple example

Just to fix ideas, we quickly review here the case of the Argyres-Douglas theory of type

(A1, A2). The basic data are:

• There are five distinguished nontrivial line defects L1, . . . , L5 in the theory, which

generate all the rest by operator products. In fact one only needs products in-

volving consecutive Li: the most general simple line defect can be written [15]

L = Lmi L
n
i+1 (1.6)

for i ∈ {1, . . . , 5} and m,n ≥ 0 (letting L6 = L1). We also have the trivial line

defect which we write as 1.

• The chiral algebra A is the (2, 5) Virasoro minimal model, with c = −22/5. The

corresponding Verlinde algebra V has two generators [Φ1,1], [Φ1,2] corresponding

to the two primaries. [Φ1,1] is the identity element, so the only nontrivial product

is [Φ1,2]× [Φ1,2], which is

[Φ1,2]× [Φ1,2] = [Φ1,1] + [Φ1,2]. (1.7)

The line defect Schur indices come out to [2]

I1(q) = χ1,1(q), ILi(q) = q−
1
2

(
χ1,1(q)− χ1,2(q)

)
. (1.8)

Thus the homomorphism f in this case is

f(1) = [Φ1,1], f(Li) = [Φ1,1]− [Φ1,2]. (1.9)

In particular, f forgets the index i, so it identifies the 5 generators Li.
4 Moreover, f

collapses the infinite-dimensional algebra L, spanned by the operators (1.6), down to

the two-dimensional algebra V .

4We will give a derivation of this property of f in §2.4.
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1.4 Diagonalizing the Verlinde algebra

To explain the main new results of this paper, we need a brief digression to recall a

structural fact about the Verlinde algebra V : the modular S operator gives a canonical

diagonalization of V [16]. Concretely, if we choose an ordering of the n primaries, then

we can represent the operation of fusion with Φi by an n× n matrix NΦi , and likewise

S by an n× n matrix; then the statement is that the matrices

N̂Φ = SNΦS
−1 (1.10)

are all diagonal.

For example, in the (2, 5) Virasoro minimal model, if we choose the ordering of the

primaries (Φ1,1,Φ1,2), then we have [17]

NΦ1,1 =

(
1 0

0 1

)
, NΦ1,2 =

(
0 1

1 1

)
, S =

2√
5

(
− sin 2π

5
sin 4π

5

sin 4π
5

sin 2π
5

)
, (1.11)

from which we can compute

N̂Φ1,1 =

(
1 0

0 1

)
, N̂Φ1,2 =

(
1−
√

5
2

0

0 1+
√

5
2

)
. (1.12)

The representation of V by the diagonal matrices N̂Φ shows that V is naturally

isomorphic to a direct sum of copies of C. Moreover these copies correspond canoni-

cally to the primaries themselves, using the ordering of the primaries we have chosen.

Another way of saying this is: V is canonically isomorphic to the algebra of functions

on the set of primaries of A. We will use the statement in this form, in §1.5 below.

1.5 Verlinde algebra and U(1)r-fixed points in three dimensions

Now we recall another place where the Verlinde algebra of A has recently appeared.

We consider the compactification of our superconformal N = 2 theory to three

dimensions on S1. As is well known, beginning with [18], the Coulomb branch of the

compactified theory is a hyperkähler space N . For example, if our theory is a theory

of class S, say S[g, C], then N is a moduli space of solutions of Hitchin equations on

C with gauge algebra g [19, 20].

The U(1)r symmetry of the theory acts geometrically on N . This action is an

important tool in the study of this space. For example, it can be used to compute

the Betti numbers of the Hitchin moduli spaces, as was noted already in [20]. More

recently [21, 22] this U(1)r action has been used to define and compute a new “U(1)r-

equivariant index” for N , related to a Coulomb branch index in the N = 2 theory. In
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both computations the starring role is played by the fixed locus F ⊂ N of the U(1)r
symmetry. The points of F are the U(1)r-invariant vacua of the compactified theory.

For our purposes the key fact about F is the following recent observation: the

points of F are naturally in 1-1 correspondence with the primaries of A [12, 23–25].5

Combining this correspondence with the picture of V reviewed in §1.4, we conclude

that there is a canonical isomorphism

h : V → O(F ), (1.13)

where O(F ) means the algebra of functions on F . Concretely, h maps [Φ] to the vector

of diagonal entries of N̂Φ, using the correspondence above to match up the points of F

with the positions along the diagonal.

1.6 Fixed points and vevs

We consider the vacuum expectation values of 1
2
-BPS line defects wrapped around S1

in S1 × R3. These vevs are functions on the vacuum moduli space N ; the process of

taking vevs gives a homomorphism of commutative algebras

L → O(N ) (1.14)

from the OPE algebra of 1
2
-BPS line defects to the algebra O(N ) of holomorphic

functions on N .6 Now consider the restriction of these vevs to the U(1)r-fixed locus

F ⊂ N : this gives another homomorphism of commutative algebras,

g : L → O(F ). (1.15)

In Argyres-Douglas theories, the map g is very far from being an isomorphism: it

forgets most of the details of a line defect, remembering only its vevs at the finitely

many U(1)r-invariant vacua. This is reminiscent of the fact that the map f , built from

line defect Schur indices IL, likewise forgets most of the details of the line defects L. In

the next section we flesh this out into a precise sense in which f and g are “the same.”

5Some early hints of this appeared in [12], and a precise correspondence of this sort in the case

of (Am, An) Argyres-Douglas theories with (m + 1, n + 1) = 1 is developed in [23], first reported in

[24]. This correspondence was used extensively in [25], where the U(1)R weights at the fixed points

were also worked out; that work also substantially broadened the scope of the correspondence, well

beyond the class of (Am, An) theories. Despite all this, as far as we know, nobody has yet provided a

first-principles explanation of why the correspondence between points of F and primaries of A exists.

In this paper we just take this correspondence as a given.
6In fact, in all examples we know, this is an isomorphism L ' O(N ), though we do not need this

fact in anything that follows.
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Before we state our main result, we would like to point out that the 1
2
-BPS line

defects that we are talking about in this section are full line defects, which are by

definition different from the half line defects in 1.2. However, away from the endpoints

of the half line defects they are “locally” the same object. In particular the OPE

algebra of half line defects is isomorphic to the OPE algebra of full line defects, both

of which we denote as L.

1.7 The commutative diagram

So far in this introduction we have described three a priori unrelated commutative

algebras associated to an N = 2 SCFT:

• The OPE algebra L of 1
2
-BPS line defects,

• The Verlinde algebra V associated to the chiral algebra A,

• The algebra O(F ) of functions on the set of U(1)r-invariant vacua of the theory

compactified on S1.

We also described three a priori unrelated maps between these algebras:

• The map f : L → V obtained by computing Schur indices in the presence of half

line defects and expanding them in terms of characters of A,

• The isomorphism h : V → O(F ), constructed using the mysterious identification

between U(1)r-invariant vacua and chiral primaries, and using also the modular

S matrix,

• The map g : L → O(F ) obtained by compactifying the theory on S1 and evalu-

ating line defect vevs in U(1)r-invariant vacua of the reduced theory.

These ingredients can be naturally assembled into a diagram:

L V

O(F )

f

g h

This raises the natural question of whether the diagram commutes, i.e. whether

h ◦ f = g. (1.16)

In §5 below, we verify by direct computation that (1.16) indeed holds, in the Argyres-

Douglas theories of type (A1, A2), (A1, A4), and (A1, A6). In §6 we verify a similar

statement in (A1, D3) and (A1, D5) theories: see §1.8 below for more on this.
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The commutativity (1.16) is the main new result of this paper. In a sense it is

not surprising — once you realize that this diagram exists, it is hard to imagine that

it would not commute — but on the other hand its physical meaning is not at all

transparent, at least to us. It should be interesting to unravel. We comment a bit

further on this question in §1.9 below.

1.8 Flavor symmetries

In N = 2 theories with flavor symmetries the story described above can be enriched.

The Schur index, rather than being a function IL(q), is promoted to IL(q, z) where

z stands for the flavor fugacities. The chiral algebra A also contains currents for the

flavor symmetry group, and thus its characters are promoted to χi(q, z). It is natural

to ask whether there are analogues of the homomorphisms f , g, h in such theories with

the extra parameters z included.7

In §6 below we consider this question for the (A1, D3) and (A1, D5) Argyres-Douglas

theories, which have flavor symmetry SU(2). The Cartan subgroup of SU(2) consists

of matrices diag(z, z−1) for |z| = 1; thus the fugacity in this case is just a single number

z. The chiral algebras in these theories are A = ŝl(2)− 4
3

and A = ŝl(2)− 8
5

respectively.

In the compactification of the theory on S1, turning on the fugacity z, with |z| = 1,

corresponds to switching on a “flavor Wilson line” around the S1. Such a Wilson line

leads to a deformation of N which does not break the U(1)r symmetry. Thus for any

fixed z we can consider the fixed locus Fz ⊂ Nz, which turns out to be discrete, just as

in the (A1, A2n) theories we considered above. Evaluating line defect vevs at Fz we get

a homomorphism

gz : L → O(Fz). (1.17)

Now we would like to repeat the story of §1.7 here, i.e. to construct maps fz and hz,

and to verify (1.16). A key question arises: what should we use as “Verlinde algebra”?

There are no conventional two-dimensional conformal field theories with A as symme-

try algebras; the usual candidate with symmetry ŝl(2)k would be the WZW model, but

that only makes sense for positive integer k. Thus there is no clear physically-defined

notion of Verlinde algebra. Still, it was realized in [27] that at admissible levels there

is a finite set of admissible representations of A whose characters span a representa-

tion of the modular group SL(2,Z). A Verlinde-like algebra built from the admissible

7In [2] the case of (A1, D3) was considered, after specializing to z → 1 to “forget” the flavor

symmetry. Though this limit is very special in the sense that characters of the two non-vacuum

admissible representations diverge in this limit and only one linear combination of the two characters

is well-defined. This linear combination and the vacuum character transform into each other under

modular transformations [26].
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representations V1 was constructed in [28] where the fusion rules were given by naive

application of the Verlinde formula [27]. V1 has the odd feature that some of the

structure constants are equal to −1.8

Nevertheless, we could try to construct fz and hz, and verify (1.16), using this

algebra V1. What we find experimentally in §6 below is that this does not quite work:

we need to use a deformed Verlinde-like algebra Vz. Vz is obtained from V1 by replacing

each structure constant −1 by −z2. Once we make this modification, the whole story

goes through as in §1.7 above.

1.9 Interpretations and comments

• The main new result of this paper is the commutative diagram in §1.7. What is the

physical interpretation of this commutative diagram? One tempting possibility

is that there is a new localization computation of the Schur index. Indeed, if we

think of the Schur index as a kind of partition function on S3 × S1, we could

imagine computing it by first reducing on S1 and then making some computation

in the resulting effective theory on S3. After this reduction the line defects become

local operators, which are determined by their vevs on N . In a localization

computation using U(1)r, they could get further reduced to just their vevs in the

U(1)r-invariant vacua. This would match our observation that the object f(L)

— which contains much9 of the information of the Schur index IL — is linearly

related to g(L), i.e. to the vevs of L in the U(1)r-invariant vacua.

• Our verification of the commutativity (1.16) requires us to evaluate explicitly the

vacuum expectation values of 1
2
-BPS line defects at the fixed points of the U(1)r

action on N . In the language of the Hitchin system, this amounts to solving an

instance of the nonabelian Hodge correspondence: for some specific Higgs bundles,

we determine the corresponding complex flat connections up to equivalence. It

would be very interesting to see how far one can push these ideas: can we compute

the vevs in every case where the vacua are isolated? Can we extend beyond the

fixed points, say to get some information about their infinitesimal neighborhoods?

Can we say anything about non-isolated fixed points?

8Fusion rules of ŝl(2)k at admissible negative fractional level have been studied intensively over

the years and have been completely solved and understood recently in [29, 30] (see also references

therein). From this point of view, the negative structure constants have to do with the fact that

admissible representations are not closed under fusion. In any case, in in our context we are simply

considering a Verlinde-like algebra V1 defined by naive application of the Verlinde formula, and not

worrying too much about whether it has a fusion interpretation.
9Though not quite all, because of the need to take q → 1 in the coefficients v

– 8 –



• It is natural to ask how broadly the commutative diagram of §1.7 exists; so

far we have checked it only in five theories. We conjecture that it exists more

generally whenever it makes sense, i.e. whenever the U(1)r-invariant vacua of the

theory reduced on S1 are all isolated. The U(1)r-invariant vacua are isolated in

all Argyres-Douglas theories where the question has been investigated, e.g. the

(Am, An) theories for gcd(m+ 1, n+ 1) = 1, but more generally they are usually

not isolated.

• One of the simplest examples where the U(1)r-invariant vacua are not isolated is

N = 2 super Yang-Mills with G = SU(2) and Nf = 4, compactified on S1 with

generic flavor Wilson lines. In this theory it appears that there are 4 isolated

U(1)r-invariant vacua, but also an S2 of U(1)r-invariant vacua, as explained e.g.

in [31]. In this theory [25] argued that nevertheless there is a correspondence

between connected components of the space of U(1)r-invariant vacua and chiral

primaries. It would be very interesting to understand how the diagram (1.16) can

be extended to this case. (An obstacle to the most naive extension is that the

line defect vevs are not constant on the S2 of invariant vacua. Perhaps one needs

instead to take the average over this S2.)

• In this paper one of the main players is the homomorphism f : L → V . The

observation that there is some relation between algebras of line defects and Ver-

linde algebras was made already in [12]. Indeed, that paper described a map

f ′ : L → V in the (A1, A2N) theories, constructed in a different way, by map-

ping certain distinguished line defects directly to minimal model primaries.10 To

forestall a possible confusion, we emphasize that f and f ′ are not the same.

For example, in the (A1, A2) theory we have f ′(Li) = [Φ1,2], while (1.9) says

f(Li) = [Φ1,1]− [Φ1,2].

• Beyond line defects one could also consider surface defects and interfaces between

surface defects. The Schur index in the presence of surface defects, and its relation

to 2d chiral algebra, were studied quite recently in [32, 33] and also featured in

the ongoing work [34]. It might be interesting to incorporate surface defects into

the story of this paper.

• In this paper we focused on examples of (A1, A2N) and (A1, D2N+1) Argyres-

Douglas theories, mainly because their chiral algebras have been relatively well

understood and computation of line defect generators is not too complicated.

10The distinguished line defects in question actually coincide with the generators Ai, Bi, . . . which

we use in §5.

– 9 –



What about other (A1, g) Argyres-Douglas theories? There is one more example

which we expect should be relatively straightforward, namely (A1, D4), for which

the chiral algebra is ŝl(3)−3/2 [6, 7, 35, 36]. Beyond this:

– The chiral algebra for (A1, A2N−1) Argyres-Douglas theories with N > 2 is

conjectured to be the BN+1 algebra, the subregular quantum Hamiltonian

reduction of ŝl(N)−N2/(N+1) [8, 26]11. As pointed out in [25], the relevant

modules associated with the U(1)r fixed points depend on the parity of

N , and for even N , the relevant modules are suitable representatives of

local modules which are closed under modular transformation [8, 26, 39, 40].

For odd N , S-transformation turns local modules into twisted modules [8,

26, 39, 40], which makes the matching of U(1)r fixed points with relevant

modules very subtle [25]. These local and twisted modules and their modular

properties are studied in [26, 39, 40].

– The situation is similar for (A1, D2N) Argyres-Douglas theories with N > 2.

Here the chiral algebra has been conjectured to be the WN algebra coming

from a non-regular quantum Hamiltonian reduction of ̂sl(N + 1)−(N2−1)/N

[8]. For even N , [25] confirmed that the relevant modules are suitable rep-

resentatives of local modules listed in [8], while for odd N the situation

becomes subtle again [25] since S-transformation turns local modules into

twisted modules [8].

– Chiral algebras for (A1, E6,7,8) Argyres-Douglas theories were conjectured in

[7, 9], and at least for (A1, E6) and (A1, E8) there is a natural guess for the

relevant class of modules. However, in these theories the computation of line

defect generators and their framed BPS spectra has not been worked out; it

would be interesting to develop it.
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2 Schur indices and their IR formulas

In this section we review the definition and IR formula for the ordinary Schur index

and the Schur index with half line defects inserted.

2.1 The Schur index

The superconformal index of a four-dimensional N = 2 SCFT is defined as [41, 42]

I(p, q, t, ai) = Tr(−1)Fpj2−j1−rqj2+j1−rtR+r
∏
i

afii e
−βδ2−̇ , (2.1)

where

2δ2−̇ = {Q̃2−̇, Q̃
†
2−̇} = E − 2j2 − 2R + r. (2.2)

Here p, q, t are three superconformal fugacities, ai are flavor symmetry fugacities, E is

the scaling dimension, j1 and j2 are Cartan generators of SU(2)1×SU(2)2, R and r are

the Cartan generators of the SU(2)R × U(1)r R-symmetry group. The trace is taken

over the Hilbert space on S3 in radial quantization.

The Schur index is obtained by taking the q = t limit [42, 43],

I(q, ai) = Tr(−1)F qE−R
∏
i

afii . (2.3)

Here the contributing states are 1
4
-BPS, annihilated by four supercharges: Q1

−, Q̃2−̇,

S−1 and S̃2−̇. Their quantum numbers satisfy

E − j1 − j2 − 2R = 0, j1 − j2 + r = 0. (2.4)

2.2 The IR formula for the Schur index

Recently an IR formula for the Schur index was conjectured in [7],12 relating the Schur

index to the trace of the “quantum monodromy” operator, a q-series introduced in [12]:

I(q) = (q)2r
∞Tr[M(q)], (q)∞ :=

∞∏
j=0

(1− qj+1). (2.5)

In this section we review the mechanics of this formula.

12We follow the convention of [2, 7] for fermion number, (−1)F = e2πiR.
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To write down the operator M(q), we need to perturb to a point of the Coulomb

branch of the theory, where the only massless fields are those of abelian N = 2 gauge

theory. M(q) will be built out of the massive BPS spectrum of the theory.

Recall that massive BPS states in an N = 2 theory lie in representations of

SU(2)J × SU(2)R, where SU(2)J is the little group. The one-particle Hilbert space is

graded by the IR charge lattice Γ, consisting of electromagnetic and flavor charges:13

thus H = ⊕γ∈ΓHγ. Factoring out the center-of-mass degrees of freedom, we have:

Hγ = [(2, 1)⊕ (1, 2)]⊗ hγ. (2.6)

To count BPS particles refined by representations of SU(2)J × SU(2)R, one consider

the protected spin character [44]

Trhγ [y
J(−y)R] =

∑
n∈Z

Ωn(γ)yn, (2.7)

with integers Ωn(γ) ∈ Z, and packages the Ωn(γ) into the “Kontsevich-Soibelman

factor”:

K(q;Xγ; Ωi(γ)) :=
∏
n∈Z

Eq((−1)nqn/2Xγ)
(−1)nΩn(γ). (2.8)

K is a q-series valued in the algebra of formal variables Xγ; these variables themselves

are valued in the “quantum torus” algebra, obeying the relations

XγXγ′ = q〈γ
′,γ〉Xγ′Xγ = q

1
2
〈γ,γ′〉Xγ+γ′ , (2.9)

where 〈, 〉 is the Dirac pairing on Γ. Eq(z) is the quantum dilogarithm defined as

Eq(z) =
∞∏
j=0

(1 + qj+
1
2 z)−1 =

∞∑
n=0

(−q 1
2 z)n

(q)n
. (2.10)

The quantum monodromy operator M(q) is defined as

M(q) =
x∏
γ∈Γ

K(q;Xγ; Ωi(γ)). (2.11)

The ordering in this product is based on the central charges Zγ: if arg(Zγ1) > arg(Zγ2)

then K(Xγ1) is to the right of K(Xγ2). The flavor charges — which have zero Dirac

13The lattice Γ strictly speaking is the fiber of a local system, depending on the point u of the

Coulomb branch, so we should really write it as Γu; we will suppress this in the notation.
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pairing with other charges — form a sublattice Γf ⊂ Γ. The trace operation is defined

by a truncation to this sublattice:

Tr(Xγ) =

{
0 if γ /∈ Γf ,

Xγ otherwise.
(2.12)

If we denote a basis for Γf by (γfa), then the trace is a function of the Xγfa
, which are

related to the flavor fugacities ai in the UV definition of the Schur index [2, 7].

TrM(q) is invariant when crossing walls of marginal stability in the Coulomb

branch [19, 44–46]. Of course this is a necessity for (2.5) to make sense, since I(q)

is defined directly in the UV and does not depend on a point of the Coulomb branch.

As pointed out in [2, 7], (2.5) is only a formal definition: in principle, in evaluating

it, we could meet infinitely many terms contributing to the same power of q. In practice

we may hope that these infinitely many terms will come with alternating signs so that

they leave a well-defined Laurent series in q, but at least we need to have some definite

prescription for how we will order the terms. In [2] the authors propose a prescription

to tackle this problem. First they rewrite (2.5) as

I(q) = (q)2r
∞Tr[S(q)S(q)], (2.13)

where S(q) is the “quantum spectrum generator” (so called because it contains enough

information to reconstruct the full BPS spectrum),

S(q) =
x∏

arg(Zγ)∈[0,π)

K(q;Xγ; Ωi(γ)), S(q) =
x∏

arg(Zγ)∈[π,2π)

K(q;Xγ; Ωi(γ)). (2.14)

Next, they conjecture that S(q) and S(q) can be expanded as Taylor series in q, with

no negative powers of q appearing. If this is so, then one can try to compute the

coefficient of qk in TrM(q) by expanding S(q) and S(q) up to some large finite order

qN . The conjecture is that for large enough N the coefficient of qk will stabilize to

some limiting value (in the examples investigated in [2] it is sufficient to take N larger

than some theory-dependent linear function of k.) In the examples we consider in this

paper, we find that the necessary stabilization does indeed occur, and thus we can use

the prescription of [2].

2.3 The Schur index with half line defects

Supersymmetric line defects in N = 2 theories have been studied extensively: a small

sampling of references is [2, 15, 47–49].

The line defects which have been studied most extensively are full line defects.

These are 1
2
-BPS objects extended along a straight line in some fixed direction nµ ∈ R4.
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For example, there are 1
2
-BPS line defects that extend along the time direction and

sits at a point in R3, preserving four Poincaré supercharges, time translation, SU(2)J
rotation around the defect in R3, and SU(2)R R-symmetry. The choices of half-BPS

subalgebra which can be preserved by such a line defect are parameterized by ζ ∈ C×.

When |ζ| = 1, so that ζ = e−iθ, the line defect can be interpreted as a heavy external

BPS source particle, whose central charge has phase θ.

In this section, following [2], we will be interested in half line defects in supercon-

formal N = 2 theories. A half line defect extends along a ray in R4 and terminates

at a point, say the origin. The half line defect looks like a full line defect except near

its endpoint; in particular, the indexing set labeling half line defects is the same as

that for full line defects, and it will sometimes be convenient to let the symbol L stand

simultaneously for a half line defect and for its corresponding full line defect. The end-

point, however, only preserves two Poincaré supercharges, and breaks all translation

symmetry. Moreover the endpoint supports a variety of local endpoint operators; these

are the operators which will be counted by the line defect Schur index.

More generally we can consider a junction of multiple half line defects Li. To

preserve some common supersymmetry, these half line defects must lie in a common

spatial plane R2 ⊂ R3. Each Li ends at the origin and has orientation

nµi = (cos θi, sin θi, 0, 0), (2.15)

where θi is the phase of the central charge of Li. After conformal mapping to S3 × S1,

each half line defect wraps S1 and sits at a point on a common great circle on S3. This

configuration preserves one Poincaré supercharge and one conformal supercharge,

Q = Q1
− + Q̃2−̇, S = S−1 + S̃2−̇. (2.16)

Recall from [42] that Q1
−, Q̃2−̇, S−1 and S̃2−̇ are exactly the four supercharges that

annihilate Schur operators. Thus the definition of Schur index can be extended to

include these half line defect insertions [1, 2]:

IL1(θ1)L2(θ2)···Ln(θn)(q) = TrH′ [e
2πiRqE−R]. (2.17)

Here the trace is over the Hilbert space H′ on S3 with half line defects Li inserted along

the great circle at angles θi. H′ consists of states annihilated by Q and S in (2.16).

For Lagrangian gauge theories with ’t Hooft-Wilson half line defects, one could use

a localization formula to compute the Schur index, as formulated in [1, 2]. In this paper

we consider half line defects in Argyres-Douglas theories, for which we do not have a

Lagrangian description available. Instead, we will use the IR formula conjectured by

[2], which we describe next.
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2.4 The IR formula for the line defect Schur index

Suppose we fix a full line defect L in R4 and go to a point u in the Coulomb branch.

Let HL,u denote the Hilbert space of the theory with line defect L inserted. In this

setting there is a new class of BPS states, called framed BPS states [15], which saturate

the bound

M ≥ Re(Z/ζ), ζ = eiθ. (2.18)

Framed BPS states form a subspace HBPS
L,u ⊂ HL,u. As usual HBPS

L,u has a decomposition

into sectors labeled by electromagnetic and flavor charges,

HBPS
L,u =

⊕
γ∈Γ

HBPS
L,u,γ. (2.19)

The degeneracies of framed BPS states are counted by the “framed protected spin

character” defined in [15]:

Ω(L, γ, u, q) = TrHBPS
L,u

[qJ(−q)R]. (2.20)

In the infrared the line defect L has a description as a sum of IR line defects, which

can be thought of as infinitely heavy dyons with charges γ ∈ Γ. These IR line defects

are represented by formal quantum torus variables Xγ with OPE given by (2.9). Then,

for each L one can define a generating function counting the framed BPS states:

F (L(θ)) =
∑
γ∈Γ

Ω(L, γ, u, q)Xγ. (2.21)

These generating functions are different in different chambers of the Coulomb branch,

undergoing framed wall-crossing at the BPS walls [15].

The IR formula of [2] for the Schur index with insertion of a half line defect L with

phase θ is:

IL(θ)(q) = (q)2r
∞Tr[F (L(θ))Sθ(q)Sθ+π(q)], (2.22)

where

Sθ(q) =
x∏

arg(Zγ)∈[θ,θ+π)

K(q;Xγ; Ωi(γ)). (2.23)

As demonstrated in [2], the right side of (2.22) is invariant under framed wall-crossing,

as is needed since the left side manifestly does not depend on a point of the Coulomb

branch. When computing half line defect Schur index we often choose θ = 0, in which

case Sθ(q) and Sθ+π(q) reduce to S(q) and S(q) respectively.
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More generally, for multiple half line defects Li, i = 1, . . . , k, with phase relations

θ1 < θ2 < · · · < θk, where there are no ordinary BPS particles with phases in the

interval [θ1, θk], the IR formula of [2] for the Schur index is

IL1(θ1)···Lk(θk) = (q)2r
∞Tr[F (L1(θ1)) . . . F (Lk(θk))Sθk(q)Sθk+π(q)]. (2.24)

We note that this formula is “compatible with operator products”, in the following

sense. The Schur index with two half line defects inserted, IL1(θ)L2(θ+δθ) with δθ small,

only depends on sgn(δθ). In particular, in the limit of δθ → 0 this looks like taking the

non-commutative OPE of two parallel half line defects with phase θ. Therefore com-

puting IL1(θ)L2(θ+δθ) and taking the q → 1 limit in the character expansion coefficient

does correspond to the commutative OPE of two parallel half line defects in L.

Given the IR formula for half line defect Schur index we would like to point out

a general property of half line defect index in Argyres-Douglas theories. Line defect

generators in Argyres-Douglas theories can be labeled as Lρi where the index i is related

to the underlying discrete symmetry of the theory. In particular, suppose Lρj and Lρi
are two half line defect generators that are related by a monodromy action, namely

F (Lρj) = M(q)F (Lρi)M
−1(q). (2.25)

Then according to the IR formula

ILρj(q) = (q)2r
∞Tr[F (Lρj)S(q)S(q)] = (q)2r

∞Tr[F (Lρj)M(q)]

= (q)2r
∞Tr[M(q)F (Lρi)M

−1(q)M(q)]

= ILρi(q).

In particular this proves that Schur index with one half line defect generator insertion

does not depend on the i-index, as first observed in some examples in [2].

3 Fixed points of the U(1)r action

3.1 The U(1)r action

Because the four-dimensional theories we consider are superconformal, they have a

U(1)r symmetry in the UV. Note that the U(1)r charges need not be integral (indeed

they are not integral in Argyres-Douglas theories), though they are rational in all

examples we will consider. Thus the action of Rt ∈ U(1)r is not necessarily trivial

when t = 2π, but there is some k for which R2πk is trivial.

The U(1)r symmetry of the four-dimensional superconformal theory acts in partic-

ular on the 1
2
-BPS line defects. Recall from [15] that each 1

2
-BPS line defect preserves

– 16 –



some subalgebra of the N = 2 algebra, with the different possible subalgebras param-

eterized by ζ ∈ C×. Given a line defect L preserving the subalgebra with parameter

ζ ∈ C×, a rotation Rt ∈ U(1)r maps L to a new operator L(t) preserving the subalgebra

with parameters eitζ.

Now suppose we consider the dimensional reduction to three dimensions on S1.

The U(1)r symmetry acts on the moduli space N of vacua of the three-dimensional

theory. In what follows we will be particularly interested in the U(1)r-invariant vacua.

3.2 Line defect vevs in U(1)r-invariant vacua

Let FL denote the vev of the line defect L wrapped on S1. FL is a function on the

moduli space N . We specialize to a U(1)r-invariant vacuum: after this specialization

FL is just a number. Moreover, since the vacuum is invariant, FL is invariant under

U(1)r acting on L, i.e. for any t, t′

FL(t) = FL(t′). (3.1)

This simple statement has surprisingly strong consequences, which put constraints

on the possible U(1)r-invariant vacua, as follows. We imagine making a small pertur-

bation away from the invariant vacuum. After this perturbation the UV line defect

L(t) can be decomposed into IR line defects LIRγ (t),

L(t)→
∑
γ

Ω(L, γ, t)LIR(t) (3.2)

with a corresponding decomposition of the vev FL(t) as a sum of monomials Xγ(t),

FL(t) =
∑
γ

Ω(L, γ, t)Xγ(t). (3.3)

Here both sides may depend nontrivially on t, since our perturbation is not U(1)r
invariant. The expansion coefficients Ω(L, γ, t) ∈ Z appearing in (3.3) are the framed

BPS state counts which we discussed earlier in (2.20), evaluated in the perturbed

vacuum, and specialized to q = 1.

Now let us take the limit where the perturbation → 0, and optimistically assume

that the Ω(L, γ, t) and Xγ(t) remain well defined in this limit. In that case we get an

interesting equation:14∑
γ

Ω(L, γ, t)Xγ(t) =
∑
γ

Ω(L, γ, t′)Xγ(t′). (3.4)

14We emphasize that (3.4) is supposed to hold only in a U(1)r-invariant vacuum. Indeed, when

considered as functions on the whole moduli space N , Xγ(t) and Xγ(t′) are holomorphic in different

complex structures, so they could hardly obey such a relation.
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Requiring (3.4) to hold for all UV line defects L gives a relation on the Xγ(t). For

example, if t′ is sufficiently close to t, so that Ω(L, γ, t) = Ω(L, γ, t′) for all L and γ,

then (3.4) says simply that Xγ(t) = Xγ(t′). More generally, though, the Ω(L, γ, t) will

jump as t is varied. Then we get a more general relation, of the form [15, 44]

Xγ(t′) = (St,t′X )γ(t). (3.5)

Here St,t′ denotes a birational map (C×)n → (C×)n which can be written concretely in

the form

St,t′ =
x∏

arg(Zγ)∈(t,t′)

TΩ(γ)
γ , (3.6)

where Tγ : (C×)n → (C×)n is a transformation of the form [44, 45]15

Tγ : (Xµ)→ (Xµ(1− σ(γ)Xγ)〈µ,γ〉) (3.7)

and σ : Γ→ {±1} is a quadratic refinement of the mod 2 intersection pairing.

The equation (3.5) is an interesting relation, but so far not useful in producing a

constraint: it just relates the values of Xγ(t) for different t.

Now let us specialize to t′ = t+ π. In that case we have the key relation from [19]

Xγ(t+ π) = X−γ(t) (3.8)

so we conclude that

St,t+πXγ(t) = X−γ(t). (3.9)

This is a closed equation for the numbers Xγ(t), with fixed t. To make it really concrete,

of course, we need some way of computing the “classical spectrum generator” St,t+π.

We could do so by first computing the BPS spectrum (e.g. by the mutation method)

and then directly using the definition (3.6), but there are also various methods available

for computing it directly. In general theories of class S some of these methods have

appeared in [19, 50–52]. In the theories we consider, we will explain a simple method

below in §3.3.

We believe that (3.9) is likely to be a useful equation for the study of U(1)r-

invariant vacua in general N = 2 theories, and it would be interesting to explore it

further. For the Argyres-Douglas theories which we consider in this paper, though, a

simpler equation suffices. Namely, instead of taking t′ = t + π we take t′ = t + 2π.

Then we get the relation

Xγ(t+ 2π) = Xγ(t), (3.10)

15Tγ should be thought of as the q → 1 limit of the operation of conjugation by the operator K

appearing in (2.8).
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leading to the fixed-point constraint

St,t+2πXγ(t) = Xγ(t). (3.11)

The constraint (3.11) has the advantage that it is purely algebraic, not involving a

complex conjugation. (3.9) implies (3.11), but not the other way around: (3.11) can

have additional “spurious” solutions not associated to actual U(1)r-invariant vacua.16

In the Argyres-Douglas theories we consider in this paper, such spurious solutions do

not occur, as we will see directly just by counting the number of solutions. Thus we

will use (3.11) as our criterion for a U(1)r-invariant vacuum.

There is one more point which will be important below: we will need to keep track

of some discrete information attached to the fixed points p ∈ N , namely the weights

of the U(1)r action on the tangent space TpN . These weights are easily computable

if we have a Higgs bundle description of the fixed point as in [23, 25]. On the other

hand, suppose that we only know the fixed point as a solution of the constraint (3.11):

how then can we compute the U(1)r weights? We will use a trick, as follows. St,t+2π

acts as exp(2πiV ) where V is a holomorphic vector field on the twistor space of N
generating the U(1)r action. Thus we have dSt,t+2π = exp(2πiV ) acting on TpN . Thus,

by computing dSt,t+2π at the fixed point, we can get the U(1)r weights mod 1.

Fortunately, in the (A1, A2N) cases we treat in §5, knowing the U(1)r weights mod

1 is sufficient to determine which fixed point we are looking at. For the (A1, D2N+1)

cases it is not sufficient, which will cause us some headaches in §6.

3.3 Classical monodromy action in Argyres-Douglas theories

To use (3.11) in practice we need a way of computing St,t+2π, which we call the classical

monodromy map. In this section we describe a convenient way of doing so in (A1, Am)

Argyres-Douglas theories.

The starting point is to use the realization of these theories as class S theories.

This implies that the space N is a moduli space of flat connections — in this case,

flat SL(2,C)-connections defined on CP1 with an irregular singularity at z = ∞. In

[19] the functions Xγ appearing in §3.2 were described from this point of view; we now

review that description.

Given a point of the Coulomb branch and generic ζ ∈ C×, [19] gives a construction

of a triangulation of an (m + 3)-gon, the “WKB triangulation.” The vertices of this

16For an extreme example, we could consider any superconformal theory in which the U(1)r charges

are all integral, such as the SU(2) gauge theory with Nf = 4; in such a theory St,t+2π is the identity

operator, so that (3.11) reduces to the triviality Xγ(t) = Xγ(t), which of course imposes no constraint

at all on the vacuum. In contrast, even in these theories, (3.9) is a nontrivial constraint.
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Figure 1: The quadrilateral QE associated to edge E.

(m+ 3)-gon are asymptotic angular directions on the “circle at infinity,”

arg(z) =
2θ + 2πj

m+ 3
, j = 1, · · · ,m+ 3, (3.12)

where θ = arg ζ. Now, given a vacuum in N and the parameter ζ ∈ C×, there is a

corresponding flat connection ∇ on CP1, with irregular singularity at z =∞. For each

of the m + 3 asymptotic directions, there is a unique ∇-flat section si whose norm is

exponentially small as z →∞. Thus altogether we get m+ 3 flat sections

(s1, s2, . . . , sm+3). (3.13)

Moreover, this tuple of flat sections is enough information to completely determine the

vacuum; one gets coordinates on N by computing SL(2,C)-invariant cross-ratios from

the sections si.

From (3.12) we see that continuously varying θ → θ + 2π is equivalent to making

a shift j → j + 2, i.e. relabeling

(s1, . . . , sm+3)→ (s3, s4, . . . , sm+3, s1, s2). (3.14)

This is the classical monodromy action on N .

Now we would like to understand concretely what this monodromy looks like,

relative to the local coordinates Xγ on N . The first step is to explain what the Xγ are.

For each internal edge E of the triangulation, there is an associated coordinate function

XE. E is bounded by two triangles which make up a quadrilateral QE, as shown in

Figure 1. Each vertex Pi is associated with a small flat section si. XE is then defined

as:

XE = −(s1 ∧ s2)(s3 ∧ s4)

(s2 ∧ s3)(s4 ∧ s1)
, (3.15)

where the si are evaluated at a common point in QE. If E is a boundary edge of the

(m+ 3)-gon, by convention, we write XE = 0. Finally to go from the XE to the desired
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Figure 2: Action of a flip on the quadrilateral QE.

Xγ one uses a dictionary decribed in [19] which maps the set of internal edges Ei to a

basis (γEi) of the charge lattice Γ.

In practice, to use this description for computing the classical monodromy, we will

need one more fact: we need to know how the coordinates XE change when we change

the triangulation. A flip of the edge E is the transformation from a triangulation T

to another triangulation T ′, where the edge E = E13 in T is replaced by E ′ = E24

in T ′, as in Figure 2. Using the standard relations between cross-ratios one gets the

transformation rules:

X T ′

E′ =
1

X T
E

, X T ′

E12
= X T

E12
(1 + X T

E ),

X T ′

E23
=
X T
E23
X T
E

1 + X T
E

, X T ′

E34
= X T

E34
(1 + X T

E ),

X T ′

E41
=
X T
E41
X T
E

1 + X T
E

.

(3.16)

In examples below, we will compute the classical monodromy as a composition of these

flips.

For (A1, D2N+1) Argyres-Douglas theories the story is very similar: the only differ-

ence is that the Hitchin system is defined on CP1 with an irregular singularity at z =∞
plus a regular singularity at z = 0. The construction of monodromy and coordinates

Xγ is parallel to what we wrote above, except that the WKB triangulations have one

more “internal” vertex, at the location of the regular singularity.

4 Line defects and their framed BPS states in class S[A1]

In this paper we use two different methods for describing the algebra of line defects in

Argyres-Douglas theories of type (A1, g) and computing their framed BPS spectra:

– 21 –



• In [49] it was proposed that generators of the ring of line defects and their framed

BPS spectra can be computed by methods of quiver quantum mechanics. The

calculation of framed BPS spectra is in parallel to the approach previously used

for ordinary BPS spectra. In simple cases this leads to an algorithm for determin-

ing the spectrum, the “mutation method” as introduced in [12, 15, 53, 54]. This

method is easy to implement on a computer. We use it in §5 below to compute

line defect generators and their generating functions in (A1, A2N) Argyres-Douglas

theories. However, for the (A1, D2N+1) Argyres-Douglas theories which we con-

sider in §5, the framed BPS spectrum in general contains higher spin states, which

defeat the mutation method.17

• Alternatively, we can use the class S[A1] realization of the (A1, A2N) or (A1, D2N+1)

theories. In this realization, line defect generators are in 1-to-1 correspondence

with isotopy classes of simple laminations on the disc or punctured disc [15]. This

leads to an algorithm for computing the framed BPS indices, as described in [15].

For our purposes in this paper, this algorithm is not quite sufficient: we also want

to know the spin content of the framed BPS spectra. In [55, 56] a method for

computing such BPS spectra in class S theories has been proposed, extending

[15].18 What we use in this paper is a slight extension of the method in [56] to

treat the case of an irregular singularity.

In §4.1-§4.2 we review the approach via mutations; in §4.3-§4.5 we review the

geometric methods of [15, 55–58]. These two methods will be used for the examples in

§5-§6 below.

4.1 Line defect generators in N = 2 theories of quiver type

4d N = 2 theories of quiver type are N = 2 theories whose BPS spectra can be

computed via a four-supercharge multi-particle quantum mechanics system encoded in

a quiver [53, 59–61]. In particular, Argyres-Douglas theories are examples of theories

of quiver type, as discussed e.g. in [12]. For 4d N = 2 theories of quiver type, there

is a nice way of constructing distinguished line defect generators via quiver mutation,

developed in [49], which we review in this section.

17In these cases the framed BPS spectra could in principle be obtained by studying the Hodge

diamond of the moduli space of stable framed quiver representations [49]. However, this is not as

automated as the “mutation method,” which prompts us to use an alternative method introduced

below.
18The paper [55] treated the spin content for framed BPS spectra associated to certain interfaces

between surface defects; [56] gave the first complete prescription applicable directly to ordinary line

defects.
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Fix a point of the Coulomb branch, and fix a half-plane inside the plane of central

charges:

hθ = {Z ∈ C | θ < arg(Z) < θ + π}, θ ∈ [0, 2π). (4.1)

Then the BPS one-particle representations in the theory can be divided into “particles”

and “antiparticles”: particles are those whose central charges lie in hθ, antiparticles are

the rest. For theories of quiver type there is a canonical positive integral basis {γi} for

Γ, such that the cone

C =

{
rank(Γ)∑
i=1

aiγi | ai ∈ R≥0

}
(4.2)

contains the charges of all BPS particles. We call such a basis a seed. The corresponding

quiver has one node for each basis charge γi, with the number of arrows from γi to γj
given by 〈γi, γj〉.

Correspondingly, in the half-plane hθ there is a cone Z(C) given by the central

charge function Z. The cone of particles is piecewise constant as one varies the pa-

rameter θ or the point of the Coulomb branch, but jumps when one boundary ray Zγi
of Z(C) hits the boundary of hθ, i.e. when the central charge of a BPS particle with

charge γi exits the particle half-plane. At this point the quiver description also jumps

discontinuously, by a process of “mutation.” Depending on whether Zγi exits hθ on the

right or on the left, the mutation is denoted as right mutation µRi or left mutation µLi.

The explicit transformation of the basis charges is [49, 53]

µRi(γj) = −δijγj + (1− δij)(γj −Min[〈γi, γj〉, 0]γi), (4.3)

µLi(γj) = −δijγj + (1− δij)(γj + Max[〈γi, γj〉, 0]γi). (4.4)

Now let us see how the quiver technology is related to the spectrum of line defects

in the theory. Recall that at low energy a UV line defect L decomposes into a sum

of IR line defects, as in (3.2). Among these IR line defects, the one with the smallest

Re(Zγ/ζ) corresponds to the ground state of the UV line defect. The charge of this

line defect is called the core charge of the UV line defect. One could define a RG map

which maps the UV line defect to its core charge γc. As discussed in [15, 49] the RG

map is a bijection in N = 2 theories of quiver type. This nice property allows one to

identify the set of UV line defects with the IR charge lattice Γ.

The RG map is piecewise constant and jumps at the locus where Re(Zγ/ζ) = 0 for

some γ, which is the same locus where quiver mutation happens. In particular when γ

itself is the charge of some BPS state the jump of γc is given by ([49]):

µRi(γc) = γc −Min[〈γi, γc〉, 0]γi, µLi(γc) = γc + Max[〈γi, γc〉, 0]γi. (4.5)
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For a given seed {γi} and its associated particle cone C, there exists a dual cone Č
defined as:

Č =

{
γ̌ ∈ Γu ⊗Z R|〈γ̌, γ〉 ≥ 0 ∀γ ∈ C

}
. (4.6)

Using the inverse of the RG map we see that the integral points of Č correspond to a

distinguished set of UV line defects by the inverse of the RG map. Within this set, the

OPE relations turn out to be extremely simple. Indeed, if γi the core charge of a UV

line defect Li, and all γi ∈ Č, then we have simply [49]

L1L2 = q
〈γ1,γ2〉

2 L3, (4.7)

where γ3 = γ1 + γ2.

Now pick a point of the Coulomb branch and a particle half-plane hθ. This fixes

an initial seed s. In addition to the dual cone Čs, there are other dual cones Čµ(s),

corresponding to the seeds µ(s) mutated from s. In these other dual cones the line

defect OPE also has the nice form (4.7). To put everything in the same footing one

can trivialize Γ using the initial seed s, then mutate Čµ(s) back to s using (4.5). After

so doing, one has a collection of dual cones meeting along codimension-one faces in

Zrank(Γ) ⊗Z R. In a general N = 2 theory, the dual cones obtained in this way cover

only some subset of the charge lattice. For Argyres-Douglas theories, however, there

are only finitely many dual cones, and they fill up the full charge lattice [49]. Thus the

full set of UV line defects is generated by the line defects whose core charges lie at the

boundaries of the dual cones.

Concretely, in the (A1, A2N) Argyres-Douglas theories, although the boundaries of

dual cones are in general codimension-1 hyperplanes, these hyperplanes intersect at

half-lines, such that line defects with core charges along those half-lines generate the

whole space of UV line defects. In these theories we thus obtain a unique and canonical

choice of line defect generators, which is very convenient for computational purposes.

(In the (A1, A2) theory we have already mentioned these generators in §1.3.)

In contrast, in the (A1, D2N+1) Argyres-Douglas theories, due to the flavor sym-

metry, the dual cone picture does not quite give a unique choice of UV line defect

generators. In these theories we will use the class S picture instead.

4.2 Framed BPS states from framed quivers

In N = 2 theories of quiver type, framed BPS spectra associated to line defects can

be computed using framed quivers [49].19 One extends the charge lattice Γ by an

19As emphasized in [49], this method does not in general produce the correct framed BPS spectrum,

but it does work for a large class of theories including Argyres-Douglas theories.
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extra direction spanned by a new “infinitely heavy” flavor charge γF , which has zero

pairing with all charges. The line defect with core charge γc is then regarded as a

particle carrying the charge γc + γF , and framed BPS states supported by the defect

are similarly regarded as particles with charges of the form

γc + γF + γh, where γh =

rank(Γ)∑
i=1

aiγi, ai ∈ Z≥0. (4.8)

One then defines a new “framed quiver,” obtained by adding to the original quiver

a new framing node representing the bare line defect and corresponding arrows. The

framed BPS states are given by the unframed BPS states of the framed quiver whose

charges are of the form (4.8).

BPS states in quiver quantum mechanics can be conveniently computed by the

“mutation method” as introduced in [12, 15, 53, 54]. Concretely, we first fix a point in

the Coulomb branch and a choice of half-plane hθ, then rotate hθ counterclockwise20

until θ has increased by π. In this process the original seed undergoes a series of

right mutations µRi, and for each mutation the node γi that exits to the right of hθ
corresponds to a BPS particle. Conversely each BPS particle will be rightmost at some

stage of the rotation, so the γi obtained in this way exhaust all BPS particles in this

chamber. In [53] this method was applied to the ordinary BPS quiver to compute the

ordinary (vanilla, unframed) BPS spectrum; here instead we apply it to the framed

quiver constructed above, to get the framed BPS spectrum.

4.3 Line defects in class S[A1] theories

In class S[A1] theories there is a natural geometric picture of the 1
2
-BPS line defects:

they correspond to paths (up to homotopy) on the internal Riemann surface C [15, 47,

48, 62]. For class S[A1] theories with irregular punctures, one has to consider not only

closed paths but also certain combinations of open paths, called laminations in [15]

(following [63] where the same combinations of open paths were considered.)

The laminations we consider are drawn on a disc, which we think of as the complex

plane compactified by adding the “circle at infinity.” The boundary circle is divided

into arcs by marked points corresponding to the Stokes directions (see [15] for more on

this.) Then a lamination is a collection of paths on the disc, carrying integer weights,

subject to some conditions [15, 63]: the sum of weights meeting each boundary arc

must be zero, and all paths with negative weights must be deformable into a small

neighborhood of the boundary.

20The choice of counterclockwise vs. clockwise is just a convention.
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Figure 3: An example of a WKB triangulation of the once-punctured triangle and a

lamination, corresponding to the line defect B2 in the (A1, D3) Argyres-Douglas theory.

4.4 Framed BPS indices in class S[A1] theories, without spin

In [15], a scheme is presented for computing the framed BPS indices associated to a

given line defect in a theory of class S[A1], without spin information. In this scheme

one needs two pieces of data:

• the lamination representing the line defect,

• the WKB triangulation determined by the chosen point of the Coulomb branch

and phase of the line defect.

It is easiest to illustrate this rule by an example. So, consider the triangulation of the

once-punctured triangle and the lamination shown in Figure 3. (This example arises

in the (A1, D3) theory considered in §6.1 below: it corresponds to the line defect called

B2 there.)

We fix an orientation of each component of the lamination. Then we divide each

component of the lamination into arcs crossing triangles. To each arc we assign the

matrix L (R) if the arc turns left (right),21

L =

(
1 0

1 1

)
, R =

(
1 1

0 1

)
. (4.9)

21The matrices we present here are the transpose of the matrices in [15], and correspondingly we

take the products in the reverse of the order taken in [15]; this corresponds to the usual order of

composition of parallel transports, and makes the construction directly compatible with [58], which

will be useful below.
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When the lamination crosses an internal edge Ei we assign the matrix

ME =

(√
XE 0

0 1/
√
XE

)
. (4.10)

To the initial and final points of each component we assign the vectors

ER =
(
0 1
)
, EL =

(
1 0
)
, BR =

(
1

0

)
, BL =

(
0

1

)
, (4.11)

choosing L or R according to whether the endpoint is on the left or the right of the

marked point of the boundary edge. Then we multiply these matrices in order, with the

beginning of the path corresponding to the rightmost matrix, to get a number for each

component. If the component has weight k we raise this number to the k-th power.

Finally we multiply the contributions from all components to get the vev.

In the example of Figure 3 above, the contribution from the left long component

with weight +1 is

ERLME2LME3RME1LME2LB
R =

1√
X1X3

+
1√

X1X3X2

+ 2

√
X3√
X1

+
√
X1X3 +

√
X3√
X1X2

+
X2

√
X3√
X1

+ X2

√
X1X3. (4.12)

Similarly, the contribution from the right long component with weight +1 is
√
X3/X1.

The short components with weight −1 contribute 1. The total contribution from this

lamination is
1

X1

+
1

X1X2

+ X3 + 2
X3

X1

+
X3

X1X2

+ X2X3 +
X2X3

X1

. (4.13)

Thus (4.13) gives the generating function of framed BPS states associated to this line

defect, without spin information.

4.5 Framed BPS indices in class S[A1] theories, with spin

We continue with our example from §4.4. Incorporating the spin information requires

us to take each term in (4.13) and assign it the correct power of q. The work of [55, 56]

provides a rule for determining these powers. The first step is to associate the terms in

(4.13) to arcs on a branched double cover Σ of the disc22 following the “path lifting”

rules of [58], as follows.

The double cover Σ is presented concretely: in each triangle we fix one branch

point and three branch cuts, as in the left side of Figure 4; the double cover has sheets

22The double cover Σ is the Seiberg-Witten curve of the N = 2 theory at a point of its Coulomb

branch, or the corresponding spectral curve of the Hitchin system.
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labeled 1 and 2, and at each cut sheet 1 is glued to sheet 2 and vice versa. Next, note

that each term in (4.13) comes from products of two specific chains of matrix elements:

e.g. the term 1
X1

comes from product of two contributions. As an example, the first

contribution comes from taking the (2, 2) entries of the matrices from the beginning to

the second-to-last L, then taking the (2, 1) entry of that L, then the (1, 1) entries of

all the rest. Each of these matrix elements corresponds to an arc on the double cover,

which we regard as a “lift” of the corresponding arc of the lamination. In Figure 4 we

show three arcs corresponding to the three nonzero matrix elements of each of L and

R; the arc for the (i, j) matrix element begins on sheet j and ends on sheet i.

Concatenating these arcs gives a long path P on Σ, associated to the term in (4.13)

which we are studying. If P has no self-intersections then we assign this term the factor

q0. If there are self-intersections then each contributes a factor q
1
2 or q−

1
2 , according to

Figure 6, where the arc which appears later in the path is drawn higher.

To illustrate how this works, we consider the term

2
X3

X1

(4.14)

in (4.13). The factor 2 here means (4.14) is a sum of two contributions, associated to

two different lifted paths: we show one of them in Figure 5. There is one crossing in

Figure 5, where both strands are lifted to sheet 1.23 Comparing this crossing to Figure

6, we see that this term should be weighted by q
1
2 . Drawing a similar picture for the

other contribution to (4.14) we see that it gets weighted by q−
1
2 . Thus altogether (4.14)

is replaced by

(q
1
2 + q−

1
2 )
X3

X1

, (4.15)

which tells us that the 2 framed BPS states with charge γ3−γ1 come in a 2-dimensional

multiplet of the rotation group SO(3). Carrying out similar computations for the other

terms one finds (as expected) that all of them come with the factor q0, i.e. they are

in the trivial representation of SO(3). Thus altogether the q-deformed version of the

generating function (4.13) turns out to be

1

X1

+
1

X1X2

+ X3 + (q
1
2 + q−

1
2 )
X3

X1

+
X3

X1X2

+ X2X3 +
X2X3

X1

. (4.16)

This is exactly the generating function for the line defect generator B2 in §6.1 below.

23The projection of the path to the base has two crossings, but at one of these crossings the two

strands are lifted to different sheets, so it is not a crossing for the lifted path.
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Figure 4: Left: a triangle with branch point and branch cuts marked. Middle: lifted

left-turn paths. Right: lifted right-turn paths.

1
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1
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Figure 5: One of the lifted paths contributing to the term (4.14).

Figure 6: Rules for assigning powers of q to self-crossings of the lifted path.

5 (A1, A2N) Argyres-Douglas theories

In this section we present the results of explicit computations verifying the commuta-

tivity (1.16) in the Argyres-Douglas theories of type (A1, A2), (A1, A4) and (A1, A6).
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Figure 7: A BPS quiver for (A1, A2) Argyres-Douglas theory.

5.1 (A1, A2) Argyres-Douglas theory

We consider (A1, A2) Argyres-Douglas theory and choose the chamber24 represented by

the BPS quiver in Figure 7 containing two BPS particles: (in increasing central charge

phase order)

γ1, γ2. (5.1)

There are five non-identity line defect generators. Assuming the line defect phase is

smaller than the phases of all BPS particles, the generating functions are [15, 49]:

F (L1) = Xγ1 ,

F (L2) = Xγ2 +Xγ1+γ2 ,

F (L3) = X−γ1 +X−γ1+γ2 +Xγ2 ,

F (L4) = X−γ1−γ2 +X−γ1 ,

F (L5) = X−γ2 .

(5.2)

In the geometric picture these generators Li correspond to five laminations which are

rotated into each other under the monodromy action. As a result their generating

functions are related to each other by the action of powers of the monodromy operator.

The Schur index with Li inserted is computed via [2]:

ILi(q) = (q)2
∞Tr[F (Li)S(q)S(q)], S(q) = Eq(Xγ1)Eq(Xγ2). (5.3)

The corresponding 2d chiral algebra is the (2, 5) minimal model [3, 5, 7], which has two

primaries: the vacuum Φ1,1 and Φ1,2 with weight −1/5. In general, characters of Φs,r

in the (p, p′) minimal model (1 ≤ s ≤ p− 1, 1 ≤ r ≤ p′ − 1) are given by [17]:

χs,r(q) = q
− (rp−sp′)2−(p−p′)2

4pp′ + 1
24

(1− 6(p−p′)2
pp′ )

(
Kp,p′

s,r (q)−Kp,p′

−s,r(q)

)
,

Kp,p′

s,r (q) =
1

q
1
24 (q)∞

∑
n∈Z

q
(2pp′n+pr−p′s)2

4pp′ .
(5.4)

24In all the examples considered in this paper, to simplify computation, we always work in a chamber

for which the number of number of BPS particles is the minimum possible — with one exception in

the case of (A1, A6) as noted below.
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The line defect Schur index ILi(q) does not depend on the index i and admits the

following character expansion [2]:

IL(q) = q−
1
2

(
χ1,1(q)− χ1,2(q)

)
. (5.5)

Similarly, the Schur index with two Li inserted is given by [2]:

ILiLj(q) = (q)2
∞Tr[F (Li)F (Lj)S(q)S(q)]. (5.6)

Unlike ILi(q), ILiLj(q) does depend on i and j, though this dependence disappears in

the limit q → 1. Expansions of ILiLj(q) in terms of characters are given as follows:

ILiLi(q) = ILiLi−1
(q) = (q−1 + q−2)χ1,1(q)− q−2χ1,2(q),

ILiLi+1
(q) = ILiLi−2

(q) = (1 + q−1)χ1,1(q)− q−1χ1,2(q),

ILiLi+2
(q) = 2χ1,1(q)− χ1,2(q).

(5.7)

The map f is given by

I
f−→ [Φ1,1], Li

f−→ [L] := [Φ1,1]− [Φ1,2]. (5.8)

Moreover,

LiLj
f−→ [LL] := 2[Φ1,1]− [Φ1,2]. (5.9)

Recall that the non-trivial fusion rule in (2, 5) minimal model is given by

[Φ1,2]× [Φ1,2] = [Φ1,1] + [Φ1,2]. (5.10)

Combining with (5.8) and (5.9) we have

[LL] = [L]× [L], (5.11)

as first observed in [2].

Next we consider the fixed points of U(1)r. For this purpose we found it convenient

to use the geometric picture as described in §3.3. The classical monodromy action

M is directly given by a single flip: see Figure 8. According to (3.16) the concrete

transformation is given by

Xγ1 →
1

Xγ2
, Xγ2 →

Xγ1Xγ2
1 + Xγ2

. (5.12)

Thus the fixed locus is

X 2
γ1
−Xγ1 − 1 = 0, Xγ2 =

1

Xγ1
. (5.13)
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Figure 8: The classical monodromy action in the (A1, A2) theory, which rotates the

triangulation of the pentagon clockwise by 2 units, is equivalent to a single flip which

replaces the 35 edge by a 14 edge.

This locus consists of two points, which we label I, II. At these points the Xγ evaluate

to:

I : (Xγ1 ,Xγ2) =

(
1−
√

5

2
,−1 +

√
5

2

)
, II : (Xγ1 ,Xγ2) =

(
1 +
√

5

2
,−1−

√
5

2

)
.

(5.14)

To construct the map g : L → O(F ), for any line defect generator Li we evaluate F (Li)

at these two fixed points, using (5.2). As expected, the dependence on Li disappears

in the process:

Li
g−→ (F I

Li
, F II

Li
) =

(
1−
√

5

2
,
1 +
√

5

2

)
. (5.15)

Of course we also have the trivial line defect, whose vev is 1 at every fixed point:

1
g−→ (1, 1). (5.16)

Finally, we follow the recipe described in §1.4, §1.5 to construct the isomorphism

h : V → O(F ). We need the fusion matrices, which are given by25

NΦ1,1 =

(
1 0

0 1

)
, NΦ1,2 =

(
0 1

1 1

)
. (5.17)

The modular S-matrix is [17]:

S =
2√
5

(
− sin 2π

5
sin 4π

5

sin 4π
5

sin 2π
5

)
. (5.18)

25Our convention is to order the primaries as (Φ1,1,Φ1,2).
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Thus the fusion matrices are diagonalized by the S matrix,

N̂Φ1,1 = SNΦ1,1S
−1 =

(
1 0

0 1

)
, N̂Φ1,2 = SNΦ1,2S

−1 =

(
1−
√

5
2

0

0 1+
√

5
2

)
. (5.19)

As we explained in §1.4-§1.5, the map h takes each of Φ1,1 and Φ1,2 to its eigenvalues. So,

it takes h(Φ1,1) = (1, 1) and either h(Φ1,2) = (1−
√

5
2
, 1+

√
5

2
) or h(Φ1,2) = (1+

√
5

2
, 1−

√
5

2
).

To decide which is the right ordering, we need to know the dictionary between U(1)r
fixed points and eigenspaces of the fusion operators. These eigenspaces themselves

correspond to primary fields, so equivalently, we need the dictionary between the fixed

points I, II and the primary fields Φ1,1, Φ1,2. This dictionary is determined by the table

below:

fixed point weights of M weights of U(1)r primary field

I e2πi(3/5), e2πi(2/5) 3
5
, 2

5
Φ1,2

II e2πi(6/5), e−2πi(1/5) 6
5
,−1

5
Φ1,1

In this table, to determine the weights of M at each fixed point, we computed directly

the linearization of the classical monodromy (5.12). On the other side, the dictionary

between primary fields and U(1) weights is taken from [25]. At any rate, we can now

read off that Φ1,1 corresponds to fixed point II and Φ1,2 corresponds to fixed point I.

Combining this with (5.19), h is given by:

[Φ1,1]
h−→ (1, 1), [Φ1,2]

h−→
(1 +

√
5

2
,
1−
√

5

2

)
. (5.20)

Composing this with f from (5.8) we have

Li
h◦f−−→

(1−
√

5

2
,
1 +
√

5

2

)
. (5.21)

Comparing this with (5.15) we see that the diagram indeed commutes.

5.2 An intermission on the homomorphism property

To make sure f is a homomorphism, (5.11) needs to hold not only for the generators

Li but also for arbitrary line defects. This would involve checking e.g.

[LLL]
?
= [L]× [L]× [L] (5.22)

and similar relations for higher number of line defect generators26. As an example let

us consider the case of three line defect generators. The line defect Schur index is given

by

ILiLjLk(q) = (q)2
∞Tr[F (Li)F (Lj)F (Lk)S(q)S(q)]. (5.23)

26We would like to comment that the product of F (L) is associative (due to associativity of the

quantum torus algebra of Xγ) and so is the fusion product.
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There are many relations between ILiLjLk ,

ILi−1LiLi+2
= ILi−1LiLi+1

= ILi−2LiLi+1
,

ILiLiLi+2
= ILi−2LiLi+2

= ILi−2LiLi ,

ILi+2LiLi+1
= ILiLiLi+1

= ILi+2LiLi = ILi−1LiLi = ILiLiLi−2
= ILi−1LiLi−2

,

ILi+1LiLi = ILiLiLi = ILiLiLi−1
= q−2ILi−1LiLi−2

,

ILi+1LiLi+1
= ILi−1LiLi−1

= ILi+1LiLi−1
= q−1ILi−1LiLi−2

,

ILi+2LiLi+2
= ILi+1LiLi+2

= ILi+2LiLi−1
= ILi−2LiLi−1

= ILi+1LiLi−2
= ILi−2LiLi−2

.

The independent indices admit the following character expansions,

ILi−2LiLi+1
= q−

1
2

(
(1 + 2q)χ1,1(q)− (1 + q)χ1,2(q)

)
,

ILi−2LiLi = q−
1
2

(
(2 + q)χ1,1(q)− 2χ1,2(q)

)
,

ILi−1LiLi−2
= q−

1
2

(
(1 + q−1 + q−2)χ1,1(q)− (1 + q−2)χ1,2(q)

)
,

ILi+2LiLi−2
= q−

1
2

(
3χ1,1(q)− 2χ1,2(q)

)
,

ILi−2LiLi−2
= q−

1
2

(
(2 + q−1)χ1,1(q)− (1 + q−1)χ1,2(q)

)
.

We immediately see that

LiLjLk
f−→ [LLL] := 3[Φ1,1]− 2[Φ1,2] = [L]× [L]× [L]. (5.24)

In principal, to prove that f is a homomorphism we need to repeat the above

calculation for arbitrary number of line defect generator insertions. We are not able

to prove it in this paper. Instead we offer some arguments about why we believe f is

indeed a homomorphism. We have seen explicitly that the images of LiLj and LiLjLk
under f does not depend on the index i. In other examples that we consider in this

paper we also checked the image of LρiLµj
27 does not depend on i. Although we don’t

have a proof for now, we conjecture this phenomenon is general, i.e. the image of

Lρ1i1Lρ2i2 . . . Lρnin under f does not depend on i1, . . . , in. Combining this conjecture

with relations between line defect generating functions one could see that f is indeed

a homomorphism.

We revisit the situation of three line defect generators. To compute the image of

LiLjLk under f we could pick any three line defect generators. Let’s recall the following

relation between F (Li) [15, 49]:

F (Li)F (Li+2) = 1 + q
1
2F (Li+1), (5.25)

27Here ρ, µ label different types of line defect generators, see §5.3, §5.4, §6.1, §6.2
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Figure 9: A BPS quiver for (A1, A4) Argyres-Douglas theory.

from which follows [L]× [L] = [Φ1,1] + [L].28 Schur index with insertion of Li, Li+2, Lk
is then given by

ILiLi+2Lk(q) = ILk(q) + q
1
2ILi+1Lk(q), (5.26)

from which it follows that

[LLL] = [L] + [LL] = [L]× [L]× [L]. (5.27)

Similarly one could consider insertion of more line defect generators. By the conjecture,

to compute the image of Li1 . . . Lin under f , it doesn’t matter what i1, . . . , in are. Then

we could again use (5.25) to reduce the number of line defect generators. Moreover this

process is consistent with the fusion rules such that

[L . . . L] = [L]× · · · × [L]. (5.28)

For other Argyres-Douglas theories that we are considering in this paper, there are

always enough relations between F (Lαi) such that the same argument goes through

provided our conjecture would hold.

5.3 (A1, A4) Argyres-Douglas theory

We consider the (A1, A4) Argyres-Douglas theory. We choose a chamber represented

by the BPS quiver shown in Figure 9. Moreover our choice is made such that there

are four BPS particles in this chamber. Their charges are (in increasing central charge

phase order):

γ1, γ3, γ2, γ4 (5.29)

Line defect generators in (A1, A4) Argyres-Douglas theory and their generating

functions were computed in [2]. For completeness we reproduce their results here.

Starting from the initial seed, we apply all possible left mutations to generate other

seeds. There are in total 42 seeds. Correspondingly there are 42 dual cones. Each

dual cone is bounded by four half-hyperplanes. Moreover, every three out of the four

half-hyperplanes intersect at a half line. In total there are four such half-lines for each

dual cone and they form edges of the dual cone. Each edge corresponds to the core

28As discussed in §1.9, in (A1, A2N ) theories the line defect generators themselves correspond to a

basis which also realizes fusion rules.
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charge of one line defect generator. For example, the dual cone for the initial seed is

given by:

Č{γ1,γ2,γ3,γ4} =

{ 4∑
i=1

aiγi | a2 ≤ 0, a1 + a3 ≥ 0, a2 + a4 ≤ 0, a3 ≥ 0

}
. (5.30)

Then we get four line defect generators whose core charges are given by

γ1,−γ1 + γ3,−γ2 + γ4,−γ4. (5.31)

Repeating this procedure for all 42 dual cones we get 14 edges. Thus the line defects

in (A1, A4) Argyres-Douglas theory are generated by the identity operator and 14 non-

trivial generators. Recall that the (2, 7) minimal model has two non-vacuum modules;

therefore we have an expected multiplicity of 7. In the class S realization of the theory

this would correspond to the Z7 symmetry of the 7-gon.

We assume that the line defect phase is smaller than the phases of all vanilla BPS

particles, and calculate the generating function using consecutive right mutations on

the framed quiver. For example, the line defect generator with core charge γc = γ1−γ3

goes through the following mutation sequence:

{γ1, γ2, γ3, γ4, γc}
µRγc−−→ {γ1, γ2, γ3, γ4 + γc,−γc}

µRγ4+γc−−−−→

{γ1, γ2, γ3 + γ4 + γc,−γ4 − γc, γ4}
µRγ3+γ4+γc−−−−−−→ {γ1, γ2,−γ3 − γ4 − γc, γ3, γ4},

(5.32)

which implies that its generating function is

F (L) = Xγ1−γ3 +Xγ1−γ3+γ4 +Xγ1+γ4 .

The generating functions for all 14 line defect generators are (as given also in [2]):

F (A1) = X−γ2+γ4 ,

F (A2) = X−γ1+γ3 ,

F (A3) = Xγ2−γ4 +Xγ1+γ2−γ4 ,

F (A4) = Xγ1−γ3−γ4 +Xγ1−γ3 ,

F (A5) = X−γ1−γ4 +X−γ1+γ2−γ4 +Xγ2−γ4 ,

F (A6) = X−γ1−γ2+γ4 +X−γ1+γ4 +X−γ1+γ3+γ4 ,

F (A7) = Xγ1−γ3 +Xγ1−γ3+γ4 +Xγ1+γ4 ,

F (B1) = Xγ1 ,

F (B2) = X−γ4 ,
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F (B3) = X−γ1−γ2 +X−γ1 ,

F (B4) = Xγ4 +Xγ3+γ4 ,

F (B5) = X−γ1 +X−γ1+γ2 +Xγ2 +X−γ1+γ2+γ3 +Xγ2+γ3 ,

F (B6) = X−γ2−γ3 +X−γ3 +X−γ2−γ3+γ4 +X−γ3+γ4 +Xγ4 ,

F (B7) = X−γ3−γ4 +Xγ2−γ3−γ4 +Xγ1+γ2−γ3−γ4 +X−γ3 +Xγ2−γ3 +Xγ1+γ2−γ3

+Xγ2 +Xγ1+γ2 .

The generating functions for Ai (Bi) are related to each other by the action of powers

of the monodromy operator. The Schur index with line defect Ai (Bi) inserted is

computed using [2]

IAi(q) = (q)4
∞Tr[F (Ai)S(q)S(q)], IBi(q) = (q)4

∞Tr[F (Bi)S(q)S(q)] (5.33)

where in this particular chamber S(q) is given by

S(q) = Eq(Xγ1)Eq(Xγ3)Eq(Xγ2)Eq(Xγ4). (5.34)

As described in [2], the Schur index with one line defect inserted does not depend on

i ∈ {1, . . . , 7}:

IA(q) = q + q4 + q5 + q6 + 2q7 + 2q8 + 3q9 + 3q10 + · · · ,

IB(q) = −q
1
2 − q

5
2 − q

7
2 − q

9
2 − 2q

11
2 − 3q

13
2 − 3q

15
2 − 4q

17
2 − 5q

19
2 + · · · .

(5.35)

The chiral algebra in this case is the (2, 7) Virasoro minimal model [3, 5, 7]. There

are three primary fields: the vacuum Φ1,1, Φ1,2 with weight −2/7 and Φ1,3 with weight

−3/7. Line defect Schur indices admit the following expansions in terms of characters:

IA(q) = q−1
(
χ1,3(q)− χ1,2(q)

)
,

IB(q) = q−
1
2

(
χ1,1(q)− χ1,2(q)

)
.

(5.36)

The map f between the line defect algebra L and the Verlinde algebra V is then given

by:

I
f−→ [Φ1,1],

Ai
f−→ [A] = [Φ1,3]− [Φ1,2],

Bi
f−→ [B] = [Φ1,1]− [Φ1,2].

(5.37)

The non-trivial fusion rules in the (2, 7) Virasoro minimal model are:

[Φ1,2]× [Φ1,2] = [Φ1,1] + [Φ1,3],

[Φ1,3]× [Φ1,3] = [Φ1,1] + [Φ1,2] + [Φ1,3],

[Φ1,2]× [Φ1,3] = [Φ1,2] + [Φ1,3].

(5.38)
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Figure 10: The classical monodromy action in the (A1, A4) theory is realized by a

sequence of flips of triangulations of the 7-gon. The initial triangulation differs from

the final one by a clockwise rotation by 2 units.

As first checked in [2],

[AA] = [A]× [A],

[BB] = [B]× [B],

[AB] = [A]× [B],

(5.39)

which gives evidence f is indeed a homomorphism L → V .

Now we turn to study the fixed points under the classical monodromy action M .

By doing a series of flips (see Figure 10, the initial zigzag triangulation corresponds

to the BPS quiver in Figure 9 using the dictionary in [19]. The monodromy action is

given as follows:

Xγ1 →
1 + Xγ2 + Xγ4 + Xγ2Xγ4 + Xγ2Xγ3Xγ4

Xγ2Xγ3
,

Xγ2 →
Xγ1Xγ2Xγ3

(1 + Xγ2 + Xγ2Xγ3)[1 + Xγ4 + Xγ2(1 + Xγ1)(1 + Xγ4 + Xγ3Xγ4)]
,

Xγ3 →
(1 + Xγ2 + Xγ1Xγ2)[1 + Xγ4 + Xγ2(1 + Xγ4 + Xγ3Xγ4)]

Xγ1Xγ2Xγ3Xγ4
,

Xγ4 →
Xγ3Xγ4

1 + Xγ4 + Xγ2(1 + Xγ1)(1 + Xγ4 + Xγ3Xγ4)
.

(5.40)

There are exactly three fixed points, which we label I, II, III. On the fixed points Xγ

– 38 –



evaluate to

Xγ4 : (α1, α2, α3),

Xγ3 : (4 + α1 − 2α2
1, 4 + α2 − 2α2

2, 4 + α3 − 2α2
3),

Xγ2 : (α1 − α2
1, α2 − α2

2, α3 − α2
3),

Xγ1 : (2 + α1 − α2
1, 2 + α2 − α2

2, 2 + α3 − α2
3),

(5.41)

where αi are the three roots of the cubic equation

α3 − α2 − 2α + 1 = 0. (5.42)

Concretely,

α1 =
1

3

(
1− 7

a
(−1)1/3 + a(−1)2/3

)
, α2 =

1

3

(
1 +

7

a
(−1)2/3 − a(−1)1/3

)
,

α3 =
1

3

(
1 +

7

a
+ a
)
, with a =

(
7

2

) 1
3 (
− 1 + i3

√
3
) 1

3 .

Evaluating the F (Ai) at the fixed points we find that the values are independent of

i = 1, . . . , 7, and similarly for F (Bi), as expected. Concretely, we get

Ai
g−→
(

1

1− α1

,
1

1− α2

,
1

1− α3

)
,

Bi
g−→
(

1

α1

,
1

α2

,
1

α3

)
.

(5.43)

Finally we want to construct h. We have the following Verlinde matrices for [Φ1,2] and

[Φ1,3]:

NΦ1,2 =

0 1 0

1 0 1

0 1 1

 , NΦ1,3 =

0 0 1

0 1 1

1 1 1

 . (5.44)

As before, we obtain h by simultaneously diagonalizing NΦ1,2 and NΦ1,3 using S-matrix

and then comparing with the correspondence between U(1) fixed points and primaries

of (2, 7) Virasoro minimal model. The S-matrix for the (2,7) minimal models is [17]:

S =
2√
7

 cos3π
14
−cos π

14
sinπ

7

−cos π
14
−sinπ

7
cos3π

14

sinπ
7

cos3π
14

cos π
14

 . (5.45)

NΦ1,2 and NΦ1,3 are simultaneously diagonalized by S:

SNΦ1,2S
−1 =

α1 0 0

0 α2 0

0 0 α3

 , SNΦ1,3S
−1 =

β1 0 0

0 β2 0

0 0 β3

 , (5.46)
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Figure 11: A BPS quiver for (A1, A6) Argyres-Douglas theory.

where

β1 =
1

3

(
2 +

7

b
(−1)2/3 − b(−1)1/3

)
, β2 =

1

3

(
2− 7

b
(−1)1/3 + b(−1)2/3

)
β3 =

1

3

(
2 +

7

b
+ b
)
, with b =

(
7

2

) 1
3 (

1 + i3
√

3
) 1

3 .

According to [23, 25], the corresponding wild Hitchin moduli space has exactly

three U(1)r-fixed points, each of which corresponds to a primary field in the (2, 7)

minimal model:

fixed point weights of M U(1)r weights primary field

I e2πi(3/7), e2πi(4/7), e2πi(5/7), e2πi(2/7) 3
7
, 4

7
, 5

7
, 2

7
Φ1,3

II e2πi(8/7), e−2πi(1/7), e2πi(10/7), e−2πi(3/7) 8
7
,−1

7
, 10

7
,−3

7
Φ1,1

III e2πi(8/7), e−2πi(1/7), e2πi(5/7), e2πi(2/7) 8
7
,−1

7
, 5

7
, 2

7
Φ1,2

Using this table and (5.46), the isomorphism h between V and O(F ) is:

[Φ1,1]
h−→ (1, 1, 1),

[Φ1,2]
h−→ (α3, α1, α2),

[Φ1,3]
h−→ (β3, β1, β2).

(5.47)

The image of Ai and Bi under h ◦ f is then:

Ai
h◦f−−→ (β3 − α3, β1 − α1, β2 − α2),

Bi
h◦f−−→ (1− α3, 1− α1, 1− α2).

(5.48)

Although it is not obvious, one can check that this indeed agrees with (5.43), so the

diagram commutes, as desired.
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5.4 (A1, A6) Argyres-Douglas theory

Here we consider the (A1, A6) Argyres-Douglas theory. This theory has a new feature:

at one of the fixed points (fixed point I below), some of the cluster coordinates Xγ
associated to the canonical chamber blow up. This being so, computing the fixed

points of the classical monodromy in that chamber actually misses one fixed point.

Thus, with the benefit of hindsight, we choose a different chamber, whose BPS quiver

is shown in Figure 11.

There are eight BPS particles in this chamber, with the following charges (in in-

creasing central charge phase order):

γ4, γ6, γ4 + γ5, γ5, γ3, γ1 + γ3, γ2, γ1. (5.49)

Quiver mutation starting from this chamber generates in total 429 seeds. After mu-

tating back to the original seed the 429 dual cones span the whole charge lattice. Each

dual cone is bounded by six half-hyperplanes. Every five of the six half-hyperplanes

intersect at a half line which forms an edge of the dual cone and there are six edges

for each dual cone. For example, the six edges of the dual cone for the initial seed

Č{γ1,γ2,γ3,γ4,γ5,γ6} are spanned by:

γ2 + γ4 + γ5 + γ6,−γ1 + γ4 + γ5 + γ6, γ4 + γ5 + γ6,

− γ1 − γ2 − γ3,−γ1 − γ2 − γ3 + γ6,−γ1 − γ2 − γ3 − γ5.
(5.50)

Repeating this for all 429 dual cones we get in total 27 edges. Correspondingly there

are 27 nontrivial line defect generators in the (A1, A6) theory. The (2, 9) minimal model

has three non-vacuum modules, so there is a multiplicity of 9, corresponding to the Z9

symmetry of the 9-gon. Assuming that the line defect phase is smaller than central

charge phases of all vanilla BPS particles, their generating functions are:

F (A1) = Xγ1+γ2+γ3−γ6 +Xγ1+γ2+γ3+γ5−γ6 +Xγ1+γ2+γ3+γ5 ,

F (A2) = X−γ2−γ4−γ5−γ6 +Xγ1−γ2−γ4−γ5−γ6 +Xγ1−γ4−γ5−γ6 ,

F (A3) = X−γ1−γ2−γ3−γ5 ,

F (A4) = Xγ2+γ4+γ5+γ6 ,

F (A5) = X−γ1−γ2−γ3+γ6 ,

F (A6) = Xγ1+γ2+γ3+γ5 +Xγ1+γ2+γ3+γ5+γ6 +Xγ1+γ2+γ3+γ4+γ5+γ6 ,

F (A7) = Xγ1−γ4−γ5−γ6 +Xγ1+γ2−γ4−γ5−γ6 +Xγ1+γ2+γ3−γ4−γ5−γ6 +Xγ1+γ2+γ3−γ5−γ6

+Xγ1+γ2+γ3−γ6 ,

F (A8) = X−γ1−γ2−γ3−γ4−γ5−γ6 +X−γ1−γ2−γ4−γ5−γ6 +X−γ2−γ4−γ5−γ6 ,
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F (A9) = X−γ1+γ4+γ5+γ6 ,

F (B1) = X−γ5−γ6 +X−γ6 ,

F (B2) = Xγ1 +Xγ1+γ2 ,

F (B3) = Xγ5 +Xγ5+γ6 ,

F (B4) = X−γ1−γ2 +X−γ2 ,

F (B5) = Xγ6 +Xγ4+γ6 ,

F (B6) = X−γ1−γ3 +X−γ1 ,

F (B7) = X−γ2−γ3−γ4−γ5 +X−γ3−γ4−γ5 +X−γ4−γ5 +X−γ5 ,

F (B8) = X−γ4−γ6 +X−γ4 +Xγ3−γ4−γ6 +Xγ3−γ4 +Xγ3 +Xγ1+γ3−γ4−γ6 +Xγ1+γ3−γ4 +Xγ1+γ3 ,

F (B9) = Xγ2 +Xγ2+γ3 +Xγ2+γ3+γ4 +Xγ2+γ3+γ4+γ5 ,

F (C1) = X−γ1−γ2−γ3 ,

F (C2) = Xγ4+γ5+γ6 ,

F (C3) = Xγ1+γ2+γ3 +Xγ1+γ2+γ3+γ4 +Xγ1+γ2+γ3+γ4+γ5 ,

F (C4) = X−γ2−γ3−γ4−γ5−γ6 +X−γ3−γ4−γ5−γ6 +X−γ4−γ5−γ6 ,

F (C5) = Xγ1−γ4−γ6 +Xγ1−γ4 +Xγ1+γ2−γ4−γ6 +Xγ1+γ2−γ4 +Xγ1+γ2+γ3−γ4−γ6

+Xγ1+γ2+γ3−γ4 +Xγ1+γ2+γ3 ,

F (C6) = X−γ4−γ5−γ6 +Xγ3−γ4−γ5−γ6 +Xγ3−γ5−γ6 +Xγ3−γ6 +Xγ1+γ3−γ4−γ5−γ6

+Xγ1+γ3−γ5−γ6 +Xγ1+γ3−γ6 ,

F (C7) = X−γ1−γ2−γ3−γ4−γ5 +X−γ1−γ2−γ4−γ5 +X−γ1−γ2−γ5 +X−γ2−γ4−γ5 +X−γ2−γ5 ,

F (C8) = Xγ2+γ5 +Xγ2+γ5+γ6 +Xγ2+γ3+γ5 +Xγ2+γ3+γ5+γ6 +Xγ2+γ3+γ4+γ5+γ6 ,

F (C9) = X−γ1−γ3+γ6 +X−γ1+γ6 +X−γ1+γ4+γ6 .

In this chosen chamber the spectrum generator S(q) is given by

S(q) = Eq(Xγ4)Eq(Xγ6)Eq(Xγ4+γ5)Eq(Xγ5)Eq(Xγ3)Eq(Xγ1+γ3)Eq(Xγ2)Eq(Xγ1)

=
∞∑

l1,··· ,l8=0

(−1)
∑8
i=1 liq

A
2

(q)l1 . . . (q)l8
X(l1+l7)γ1+l2γ2+(l3+l7)γ3+(l4+l8)γ4+(l5+l8)γ5+l6γ6 ,

where

A =
8∑
i=1

li−l1(l7−l2+l3)+l3(l2+l4+l8−l7)−l4(l8+l5−l6−l7)+l8(l7−l5)+l5l6. (5.51)

For sufficiently large enough N the truncated SN(q) stabilizes to

SN(q) = 1−
6∑
i=1

Xγiq
1
2 + (X2γ1 +X2γ2 +X2γ3 +Xγ1+γ2+γ3 +X2γ4 +Xγ1+γ4
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+Xγ2+γ4 +X2γ5 +Xγ1+γ5 +Xγ2+γ5 +Xγ3+γ5 +X2γ6 +Xγ1+γ6 +Xγ2+γ6

+Xγ3+γ6 +Xγ4+γ5+γ6)q + . . .

The Schur index with line defect L (L = Ai, Bi, Ci) inserted is given by

IL(q) = (q)6
∞Tr[F (L)S(q)S(q)]. (5.52)

In particular the line defect Schur index forgets the i index as expected:

IA(q) = −q
3
2 (1 + q3 + q4 + q5 + 2q6 + 2q7 + 3q8 + · · · ),

IB(q) = −q
1
2 (1 + q2 + q3 + 2q4 + 2q5 + 3q6 + 4q7 + 6q8 + · · · ),

IC(q) = q(1 + q2 + q3 + q4 + 2q5 + 3q6 + 3q7 + 5q8 + · · · ).

(5.53)

The chiral algebra in this case is conjectured to be the (2, 9) Virasoro minimal

model [3, 5, 7]. There are four primary fields: Φ1,1 which is the vacuum, Φ1,2 with

weight −1/3, Φ1,3 with weight −5/9, and Φ1,4 with weight −2/3. The line defect Schur

indices have the following expansions in terms of the characters:

IA(q) = q−
3
2

(
χ1,3(q)− χ1,4(q)

)
,

IB(q) = q−
1
2

(
χ1,1(q)− χ1,2(q)

)
,

IC(q) = q−1
(
− χ1,2(q) + χ1,3(q)

)
.

(5.54)

Thus the map f between the line defect OPE algebra L and the Verlinde algebra V of

the (2, 9) minimal model is:

I
f−→ [Φ1,1],

Ai
f−→ [A] = [Φ1,3]− [Φ1,4],

Bi
f−→ [B] = [Φ1,1]− [Φ1,2],

Ci
f−→ [C] = −[Φ1,2] + [Φ1,3].

(5.55)

Non-trivial fusion rules in the (2, 9) minimal model are given by:

[Φ1,2]× [Φ1,2] = [Φ1,1] + [Φ1,3],

[Φ1,2]× [Φ1,3] = [Φ1,2] + [Φ1,4],

[Φ1,2]× [Φ1,4] = [Φ1,3] + [Φ1,4],

[Φ1,3]× [Φ1,3] = [Φ1,1] + [Φ1,3] + [Φ1,4],

[Φ1,3]× [Φ1,4] = [Φ1,2] + [Φ1,3] + [Φ1,4],

[Φ1,4]× [Φ1,4] = [Φ1,1] + [Φ1,2] + [Φ1,3] + [Φ1,4].

(5.56)
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Figure 12: Monodromy action via a sequence of flips of triangulations of the 9-gon.

Using these fusion rules one can check that [AA] = [A] × [A], [AB] = [A] × [B], and

[BB] = [B]× [B].

Now we study the fixed points under the classical monodromy action. By consider-

ing the sequence of flips shown in Figure 12 we compute that the classical monodromy

is:

Xγ1 → Xγ2(1 + Xγ3 + Xγ3Xγ4), Xγ2 →
Xγ3Xγ4Xγ5

1 + Xγ3 + Xγ3Xγ4
,

Xγ3 →
Xγ1

1 + Xγ3(1 + Xγ4)(1 + Xγ1)
,

Xγ4 →
(1 + Xγ3 + Xγ3Xγ4)(1 + Xγ3 + Xγ3Xγ1)

Xγ3Xγ4Xγ1
,

Xγ5 →
Xγ6 [1 + Xγ3(1 + Xγ4)(1 + Xγ1)]

1 + Xγ3 + Xγ3Xγ1
, Xγ6 →

Xγ4
1 + Xγ3(1 + Xγ4)(1 + Xγ1)

.

(5.57)

There are exactly four fixed points which we label I, II, III, IV. At the fixed points Xγ

evaluate to:

Xγ1 : (−1, α1, α2, α3), Xγ2 : (−1, 1− α2, 1− α3, 1− α1),

Xγ3 : (−1, α2, α3, α1), Xγ4 : (−1, 1− α3, 1− α1, 1− α2),

Xγ5 : (−1, α1, α2, α3), Xγ6 : (−1, 1− α2, 1− α3, 1− α1),
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where

α1 = (−1)
4
9 − (−1)

5
9 , α2 = (−1)

8
9 − (−1)

1
9 , α3 = (−1)

2
9 − (−1)

7
9 .

The line defect vevs evaluated at the fixed points satisfy:

F (Ai) = F (Aj), F (Bi) = F (Bj), F (Ci) = F (Cj). (5.58)

Explicitly, the evaluation map is:

Ai
g−→
(
1,−α3,−α1,−α2),

Bi
g−→
(
0, 1 + α1, 1 + α2, 1 + α3

)
,

Ci
g−→
(
− 1, 1− α3, 1− α1, 1− α2

)
.

(5.59)

The fusion matrices for [Φ1,2], [Φ1,3] and [Φ1,4] are:

NΦ1,2 =


0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 1

 , NΦ1,3 =


0 0 1 0

0 1 0 1

1 0 1 1

0 1 1 1

 , NΦ1,4 =


0 0 0 1

0 0 1 1

0 1 1 1

1 1 1 1

 . (5.60)

The S-matrix for (2,9) minimal model is given by [17]:

S =
2

3


−sin2π

9
cos π

18
−sinπ

3
sinπ

9

cos π
18
−sinπ

9
−sinπ

3
sin2π

9

−sinπ
3
−sinπ

3
0 sinπ

3

sinπ
9

sin2π
9

sinπ
3

cos π
18

 . (5.61)

The fusion matrices are simultaneously diagonalized by S:

SNΦ1,2S
−1 =


−α3 0 0 0

0 −α1 0 0

0 0 1 0

0 0 0 −α2

 , SNΦ1,3S
−1 =


1 + α1 0 0 0

0 1 + α2 0 0

0 0 0 0

0 0 0 1 + α3

 ,

SNΦ1,4S
−1 =


1− α3 0 0 0

0 1− α1 0 0

0 0 −1 0

0 0 0 1− α2

 .

(5.62)

According to [23, 25], the correspondence between U(1)r-fixed points in N and the

primaries of the (2, 9) Virasoro minimal model is:
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Figure 13: A BPS quiver for the (A1, D3) Argyres-Douglas theory.

fixed point U(1) weights primary field

I 4
9
, 5

9
, 7

9
, 2

9
, 10

9
,−1

9
Φ1,3

II 7
9
, 2

9
, 10

9
,−1

9
, 4

3
,−1

3
Φ1,2

III 1
3
, 2

3
, 4

9
, 5

9
, 7

9
, 2

9
Φ1,4

IV 4
3
,−1

3
, 10

9
,−1

9
, 14

9
,−5

9
Φ1,1

Based on this table and (5.62), the isomorphism h : V → O(F ) is:

[Φ1,1]
h−→
(
1, 1, 1, 1

)
,

[Φ1,2]
h−→
(
1,−α1,−α2,−α3

)
,

[Φ1,3]
h−→
(
0, 1 + α2, 1 + α3, 1 + α1

)
,

[Φ1,4]
h−→
(
− 1, 1− α1, 1− α2, 1− α3

)
.

(5.63)

Combining (5.55), (5.59) and (5.63) confirms that h ◦ f = g in the (A1, A6) Argyres-

Douglas theory.

6 (A1, D2N+1) Argyres-Douglas theories

In this section we present the results of explicit computations verifying the commuta-

tivity (1.16) in the Argyres-Douglas theories of type (A1, D3) and (A1, D5), with the

appropriate modifications to take care of the flavor symmetry in these theories.

6.1 (A1, D3) Argyres-Douglas theory

We consider (A1, D3) Argyres-Douglas theory. This is equivalently the (A1, A3) Argyres-

Douglas theory. Line defect generators and their generating functions in this description

were studied in [2, 15]. Line defect Schur indices and the relation to the Verlinde algebra

were studied in [2]. Here we use the (A1, D3) description instead.
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(a)

1

2 3

4

(b)

Figure 14: (a): CP1 \ D∞ where D∞ is a disk around z = ∞ bounded by S1 with

three marked points colored in blue. The regular singularity at z = 0 is colored in

black. (b): A triangulation in the (A1, D3) Argyres-Douglas theory. There are three

boundary edges. The blue marks correspond to the positions of three Stokes rays.

We choose a chamber where the BPS quiver is as in Figure 13, containing BPS

particles with charges (in increasing phase order):

γ1, γ2, γ3.

Note that γ1 + γ3 has zero Dirac pairing with any charge, and thus is a pure flavor

charge.

The corresponding Hitchin system is defined on CP1, with one irregular singularity

at z = ∞ and one regular singularity at z = 0. There are three Stokes rays emerging

from the irregular singularity. Correspondingly there are three marked points on the

S1 bounding the cut-out disc around z = ∞, as in Figure 14a. The WKB triangulation

for the chosen chamber is shown in Figure 14b. Here Xγ1 corresponds to edge 14, Xγ2

corresponds to edge 13, and Xγ3 corresponds to edge 34.

Now we use the method reviewed in §4.3 to describe a generating set of line defects.

There are seven generators, including a pure flavor line defect C whose corresponding

lamination is a loop around the regular singularity. The other six generators come in

two types, A and B, corresponding to two different kinds of laminations: see Figure 15.

We denote the six generators as Ai, Bi (i = 1, 2, 3), where A1 and B1 correspond to the

laminations shown in Figure 15. The lamination for Ai+1 (Bi+1) is given by rotating

the lamination for Ai (Bi) counterclockwise by 2π/3. The flavor charge is normalized
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+1

-1

(a) Type A

+1

-1

+1

-1

(b) Type B

(c) Type C

Figure 15: Three types of laminations in (A1, D3) Argyres-Douglas theory.

to be (γ1 + γ3)/2, and the corresponding Xγ is equal to the SU(2) flavor fugacity z:

z = X γ1+γ3
2

. (6.1)

Moreover we define

Xγ′ := X γ1−γ3
2

. (6.2)

We computed generating functions of line defect generators using the method reviewed

in §4.3. They are listed below (these differ slightly from the analogous formulas in [2]

because we are computing in a different chamber):

F (A1) = z−1X−γ2 +X−γ′ +X−γ′−γ2 ,

F (A2) = X−γ′ +X−γ′+γ2 + zXγ2 ,
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F (A3) = Xγ′ ,

F (B1) = X−γ2 + z−1X−γ2+γ′ ,

F (B2) = X−2γ′+γ2 +X−2γ′−γ2 + zX−γ′+γ2 + (q
1
2 + q−

1
2 )X−2γ′ + (z + z−1)X−γ′ + z−1X−γ′−γ2 ,

F (B3) = Xγ2 + zXγ2+γ′ ,

F (C) = z + z−1.

The pure flavor line defect C is a Wilson line in the fundamental representation of the

SU(2) flavor symmetry.

The Schur index with one line defect L inserted is computed as

IL(q, z) = (q)2
∞Tr[F (L)S(q)S(q)], with S(q) = Eq(Xγ1)Eq(Xγ2)Eq(Xγ3). (6.3)

As usual the Schur indices with defects Ai and Bi inserted do not depend on the index

i; concretely (these do match [2], as they should since they are chamber-independent):

IA(q, z) = −q
1
2 (χ2 + χ4q + χ2⊕4⊕6q

2 + χ2⊕2⊕4⊕2⊕6⊕8q
3 + χ2⊕3⊕4⊕3⊕6⊕3⊕8⊕10q

4

+ χ2⊕4⊕4⊕6⊕6⊕4⊕8⊕3⊕10⊕12q
5 + · · · ),

IB(q, z) = −q
1
2 (1 + χ3q

2 + χ1⊕3q
3 + χ1⊕3⊕5q

4 + χ1⊕3⊕2⊕5q
5 + χ1⊕2⊕3⊕3⊕5⊕2⊕7q

6 + · · · ),

where framed BPS states organize themselves into representations of SU(2)29.

The associated chiral algebra is ŝl(2)− 4
3
[3, 5–7, 10]. There are three admissible

representations [17, 27] with highest weights:

Φ0 =

[
−4

3
, 0

]
, Φ1 =

[
−2

3
,−2

3

]
, Φ2 =

[
0,−4

3

]
(6.4)

where Φ0 is the highest weight for the vacuum module. Their characters were computed

using the Kazhdan-Lusztig formula in [2, 17]. In particular the line defect Schur indices

could be written as:

IA(q, z) = q−
1
2 z−1

(
− χ1(q, z) + χ2(q, z)

)
,

IB(q, z) = q−
1
2

(
χ0(q, z)− χ1(q, z) + z−2χ2(q, z)

)
.

(6.5)

The expansions of IAiAj , IBiBj and IAiBj in terms of characters are:

IAiAi(q, z) = IAiAi+1
(q, z) = (1 + q−1)χ0(q, z)− q−1χ1(q, z) + q−1z−2χ2(q, z),

IAiAi−1
(q, z) = 2χ0(q, z)− χ1(q, z) + z−2χ2(q, z),

IBiBi(q, z) = IBiBi+1
(q, z) = (1 + q−1 + q−2)χ0(q, z)− [q−1(1 + z−2) + q−2]χ1(q, z)

29We label irreducible SU(2) representations by their dimensions.
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+ [q−1(1 + z−2) + q−2z−2]χ2(q, z),

IBiBi−1
(q, z) = (2 + q)χ0(q, z)− (2 + z−2)χ1(q, z) + (1 + 2z−2)χ2(q, z),

IAiBi(q, z) = q−1(z + z−1)χ0(q, z)− (q−1 + q−2)z−1
(
χ1(q, z)− χ2(q, z)

)
,

IAiBi+1
(q, z) = IAiBi−1

(q, z) = (z + z−1)χ0(q, z)− (1 + q−1)z−1
(
χ1(q, z)− χ2(q, z)

)
.

In [2] the authors take the limit q → 1, z → 1 and relate the line defect algebra to

the Verlinde-like algebra of ŝl(2)− 4
3
. Here we keep z general while taking q → 1. In

this limit the expansion coefficients do not depend on the i index anymore, just as

in the (A1, A2N) case. We introduce a z-deformed Verlinde-like algebra Vz with the

z-deformed modular fusion rules:

[Φ1]× [Φ1] = [Φ2],

[Φ1]× [Φ2] = −z2[Φ0],

[Φ2]× [Φ2] = −z2[Φ1].

(6.6)

If we take z = 1, this reduces to the naive modular fusion rules of ŝl(2)− 4
3

[2, 17]. The

homomorphism f : L → Vz is given by:

I
f−→ [Φ0],

Ai
f−→ [A] = z−1

(
[Φ2]− [Φ1]

)
,

Bi
f−→ [B] = [Φ0]− [Φ1] + z−2[Φ2].

(6.7)

f is believed to be a homomorphism since

[AA] = 2[Φ0]− [Φ1] + z−2[Φ2] = [A]× [A],

[BB] = 3[Φ0]− (2 + z−2)[Φ1] + (1 + 2z−2)[Φ2] = [B]× [B],

[AB] = (z + z−1)[Φ0]− 2z−1
(
[Φ1]− [Φ2]

)
= [A]× [B].

(6.8)

We emphasize that this holds if and only if the z-deformed modular fusion rules are as

given in (6.6).

The fusion matrices for [Φ1] and [Φ2] are:

NΦ1 =

 0 1 0

0 0 1

−z2 0 0

 , NΦ2 =

 0 0 1

−z2 0 0

0 −z2 0

 . (6.9)

These two matrices are simultaneously diagonalizable for z 6= 0, with eigenvalues:

eigenvector λΦ1 λΦ2

(1,−z2/3, z4/3) −z2/3 z4/3

(1, (−1)1/3z2/3, (−1)2/3z4/3) (−1)1/3z2/3 (−1)2/3z4/3

(1,−(−1)2/3z2/3,−(−1)1/3z4/3) −(−1)2/3z2/3 −(−1)1/3z4/3
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Figure 16: Classical monodromy action via two flips in (A1, D3) Argyres-Douglas

theory.

Now we turn to study fixed loci of the classical monodromy in this chamber.

Through a composition of two flips (see Figure 16) the monodromy action is:

Xγ1 →
1 + Xγ3 + Xγ2Xγ3

Xγ2
,

Xγ2 →
1

Xγ3 + Xγ2Xγ3
,

Xγ3 →
Xγ1Xγ2Xγ3

1 + Xγ3 + Xγ2Xγ3
.

(6.10)

The fixed locus is determined by the equations

Xγ2(1 + Xγ2)Xγ3 = 1, Xγ1 = Xγ3(2 + Xγ2 + Xγ3 + Xγ2Xγ3). (6.11)

To make connection with the flavor fugacity, we rewrite these equations in terms of

Xγ2 , z and x := Xγ′ ; this gives

X 3
γ2
z2 = 1, x = Xγ2(1 + Xγ2)z. (6.12)

One can check that this is exactly the same locus where F (Ai) = F (Aj) and F (Bi) =

F (Bj). In particular, this implies the evaluation map g forgets the i index as expected.

Now recall that the value of z corresponds to the SU(2) flavor holonomy that could

be turned on when compactifying the 4d theory on S1. With this in mind we first fix

z and then look for the U(1)r-fixed points. For each value of z 6= 0, there are three

U(1)r-fixed points, which matches the number of admissible representations of ŝl(2)− 4
3
.

The evaluation map g is concretely given by:

1
g−→
(
1, 1, 1

)
,

Ai
g−→
(
z1/3 + z−1/3,−(−1)1/3z1/3 + (−1)2/3z−1/3,−(−1)1/3z−1/3 + (−1)2/3z1/3

)
,

Bi
g−→
(
1 + z2/3 + z−2/3, 1 + (−1)2/3z2/3 − (−1)1/3z−2/3,

1 + (−1)2/3z−2/3 − (−1)1/3z2/3
)
.

(6.13)

– 51 –



Figure 17: A BPS quiver for the (A1, D5) Argyres-Douglas theory.

Now, in contrast to the cases we studied in §5, in this case the weights of the classical

monodromy action are not sufficient to distinguish the three U(1)r-fixed points, as we

see from the following table (U(1)r weights and correspondence between fixed points

and primary fields taken from results of [23, 25]):

fixed point weights of M weights of U(1)r primary field

I −1±i
√

3
2

1
3
, 2

3
Φ1

II −1±i
√

3
2

−1
3
, 4

3
Φ0

III −1±i
√

3
2

−1
3
, 4

3
Φ2

Thus we cannot determine a priori which U(1)r-fixed point should correspond to

which eigenspace of the fusion matrices. This gives an S3 ambiguity in constructing

the map h. Still, we can just try all of the 6 possible mappings and see if one of them

works. Indeed, suppose we take:

[Φ1]
h−→
(
− z2/3,−(−1)2/3z2/3, (−1)1/3z2/3

)
,

[Φ2]
h−→
(
z4/3,−(−1)1/3z4/3, (−1)2/3z4/3

)
.

(6.14)

Combining this with (6.7) and (6.13), we find that indeed h ◦ f = g for every z 6= 0.

6.2 (A1, D5) Argyres-Douglas theory

We choose the canonical chamber represented by the BPS quiver given in Figure 17,

with five BPS particles (in increasing central charge phase order):

γ1, γ4, γ3, γ2, γ5.

The corresponding Hitchin system is defined on CP1 with one regular singularity

at z = 0 and one irregular singularity at z =∞ with five stokes rays emerging from it,

i.e. there are five marked points on the S1 which bounds D∞, the disk around z =∞
that’s cut out from CP1. The situation is depicted in Figure 18. The corresponding
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Figure 18: CP1 \ D∞ where D∞ is a disk around z = ∞ bounded by S1 with five

marked points colored in blue. The regular singularity at z = 0 is colored in black.

1

2

3 4

5

6

Figure 19: A triangulation in the (A1, D5) Argyres-Douglas theory. There are five

boundary edges. The blue marks correspond to positions of five Stokes rays.

WKB triangulation for this chamber is given in Figure 19, where Xγ1 corresponds to

edge 13, Xγ2 corresponds to edge 35, Xγ3 corresponds to edge 45, Xγ4 corresponds to

edge 56 and Xγ5 corresponds to edge 46.

The line defect generators correspond to laminations that can not be expressed as

sum of other laminations. In this case there are 21 such laminations. The lamina-

tion (E) which is a loop around the regular singularity corresponds to the pure flavor

line defect. The other 20 laminations come in four types A,B,C and D. We label

their corresponding generators as Ai, Bi, Ci and Di (i = 1, . . . , 5) and list laminations

corresponding to the generators A1, B1, C1, D1 and E in Figure 20. Laminations corre-

sponding to e.g. generators Ai+1 are obtained by rotating laminations for Ai clockwise

by 4π/5. We define the flavor charge γf and γ′ as follows:

γf =
γ4 + γ5

2
, γ′ =

γ4 − γ5
2

. (6.15)

The SU(2) flavor fugacity is z := Tr(Xγf ). The generating functions are computed

using the method as reviewed in §4.3. In particular, the line defect generator D2 has
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Figure 20: Five types of laminations in (A1, D5) Argyres-Douglas theory.
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framed BPS states with charge 2γ2 in a 3-dimensional multiplet of SO(3):

F (A1) = X−γ1 +X−γ1−γ2 ,

F (A2) = X−γ1 +Xγ2 +X−γ1+γ2 +Xγ2+γ3 +X−γ1+γ2+γ3 + zXγ2+γ3+γ′ + zX−γ1+γ2+γ3+γ′ ,

F (A3) = Xγ2 +Xγ1+γ2 +X−γ3 +Xγ2−γ3 +Xγ1+γ2−γ3 + z−1X−γ3+γ′ + z−1Xγ2−γ3+γ′

+ z−1Xγ1+γ2−γ3+γ′ ,

F (A4) = Xγ1 ,

F (A5) = (z + z−1)X−γ′ + z−1X−γ3−γ′ + z−1X−γ2−γ3−γ′ + zXγ3−γ′ + (q1/2 + q−1/2)X−2γ′

+X−γ2−2γ′ +X−γ3−2γ′ +X−γ2−γ3−2γ′ +Xγ3−2γ′ ,

F (B1) = X−γ1−γ′ +X−γ1−γ2−γ′ +X−γ1+γ3−γ′ + zX−γ1+γ3 ,

F (B2) = X−γ1+γ′ +Xγ2+γ′ +X−γ1+γ2+γ′ ,

F (B3) = Xγ2+γ′ +Xγ1+γ2+γ′ ,

F (B4) = z−1Xγ1−γ3 +Xγ1−γ′ +Xγ1−γ3−γ′ ,

F (B5) = X−γ2−γ′ ,

F (C1) = X−γ′ +Xγ3−γ′ + zXγ3 ,

F (C2) = (q1/2 + q−1/2)
(
X−γ1−γ′ +Xγ2−γ′ +X−γ1+γ2−γ′ +X−γ1−γ3−γ′ + z−1X−γ1−γ3

)
+X−γ′ +X−γ3−γ′ +X−γ1−γ2−γ3−γ′ +Xγ2−γ3−γ′ +X−γ1+γ2−γ3−γ′ +Xγ2+γ3−γ′

+X−γ1+γ2+γ3−γ′ + (z + z−1)X−γ1 + (z + z−1)Xγ2 + (z + z−1)X−γ1+γ2 + z−1X−γ3

+ z−1X−γ1−γ2−γ3 + z−1Xγ2−γ3 + z−1X−γ1+γ2−γ3 + zXγ2+γ3 + zX−γ1+γ2+γ3 ,

F (C3) = Xγ′ ,

F (C4) = (q1/2 + q−1/2)
(
Xγ2−γ′ +Xγ1+γ2−γ′

)
+X−γ′ +X−γ3−γ′ +Xγ2−γ3−γ′ +Xγ1+γ2−γ3−γ′

+Xγ2+γ3−γ′ +Xγ1+γ2+γ3−γ′ + z−1Xγ2 + z−1Xγ1+γ2 + z−1X−γ3 + z−1Xγ2−γ3

+ z−1Xγ1+γ2−γ3 + zXγ2 + zXγ1+γ2 + zXγ2+γ3 + zXγ1+γ2+γ3 ,

F (C5) = X−γ′ +X−γ3−γ′ +X−γ2−γ3−γ′ + z−1X−γ3 + z−1X−γ2−γ3 ,

F (D1) = X−γ1+γ3 + zX−γ1+γ3+γ′ ,

F (D2) = (q1/2 + q−1/2)Xγ2 + (q1/2 + q−1/2)X−γ1+γ2 + (1 + 1 + q + q−1)X2γ2

+ (q1/2 + q−1/2)X−γ1+2γ2 + (q1/2 + q−1/2)Xγ1+2γ2 +X−γ1−γ3 + (q1/2 + q−1/2)Xγ2−γ3

+ (q1/2 + q−1/2)X−γ1+γ2−γ3 + (q1/2 + q−1/2)X2γ2−γ3 +X−γ1+2γ2−γ3 +Xγ1+2γ2−γ3

+ (q1/2 + q−1/2)X2γ2+γ3 +X−γ1+2γ2+γ3 +Xγ1+2γ2+γ3 + (z + z−1)Xγ2+γ′

+ (z + z−1)X−γ1+γ2+γ′ + (z + z−1)(q1/2 + q−1/2)X2γ2+γ′ + (z + z−1)X−γ1+2γ2+γ′

+ (z + z−1)Xγ1+2γ2+γ′ + z−1X−γ1−γ3+γ′ + (q1/2 + q−1/2)z−1Xγ2−γ3+γ′

+ (q1/2 + q−1/2)z−1X−γ1+γ2−γ3+γ′ + (q1/2 + q−1/2)z−1X2γ2−γ3+γ′ + z−1X−γ1+2γ2−γ3+γ′

+ z−1Xγ1+2γ2−γ3+γ′ + (q1/2 + q−1/2)zX2γ2+γ3+γ′ + zX−γ1+2γ2+γ3+γ′ + zXγ1+2γ2+γ3+γ′ ,
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F (D3) = Xγ1−γ3 + z−1Xγ1−γ3+γ′ ,

F (D4) = (q1/2 + q−1/2)Xγ1−2γ′ +Xγ1−γ3−2γ′ +Xγ1+γ3−2γ′ + z−1Xγ1−γ′ + z−1Xγ1−γ3−γ′

+ zXγ1−γ′ + zXγ1+γ3−γ′ ,

F (D5) = (q1/2 + q−1/2)
(
X−γ1−2γ′ +X−γ1−γ2−2γ′ +X−γ1−γ2−γ3−2γ′ + z−1X−γ1−γ2−γ3−γ′

)
+X−γ1−γ3−2γ′ +X−γ1−2γ2−γ3−2γ′ +X−γ1+γ3−2γ′ + (z + z−1)X−γ1−γ′

+ (z + z−1)X−γ1−γ2−γ′ + z−1X−γ1−γ3−γ′ + z−1X−γ1−2γ2−γ3−γ′ + zX−γ1+γ3−γ′ ,

F (E) = z + z−1.

The line defect Schur index is

IL(q, z) = (q)4
∞Tr[F (L)S(q)S(q)], with

S(q) = Eq(Xγ1)Eq(Xγ4)Eq(Xγ3)Eq(Xγ2)Eq(Xγ5).
(6.16)

After inserting generating functions the calculation boils down to computing the fol-

lowing:

(q)4
∞Tr[Xaγ1+bγ2+cγ3+dγ′S(q)S(q)]

= (q)4
∞

∞∑
li,ki=0

(−1)a+b+c+dqA/2zl4+l5−k4−k5

(q)l1 . . . (q)l5(q)k1 . . . (q)k5
δk1,l1+aδk2,l2+bδk3,l3+cδk4,l4−l5+k5+d, with

A =
1

2

(
a+ b+ ab+ c+ bc− cd+ d(1 + 2c+ 2l3) + 2

(
l1 + l2 + al2 + cl2 + l1l2 + l3

+ l2l3 + k5(1 + c+ l3) + l4 + l3l4
))
.

Within the same class line defect Schur indices are the same. The coefficients in q are

again characters of certain SU(2) representations:

IA(q, z) = −q
1
2 (1 + χ3q + χ1⊕3⊕5q

2 + χ1⊕3⊕2⊕5⊕7q
3 + · · · ),

IB(q, z) = q(χ2 + χ4q + χ2⊕4⊕6q
2 + χ2⊕2⊕4⊕2⊕6⊕8q

3 + · · · ),

IC(q, z) = −q
1
2 (χ2 + χ4q + χ2⊕2⊕4⊕6q

2 + χ2⊕2⊕4⊕3⊕6⊕8q
3 + · · · ),

ID(q, z) = q(1 + χ3q
2 + χ1⊕3q

3 + · · · ).

(6.17)

The chiral algebra corresponding to the (A1, D5) Argyres-Douglas theory is ŝl(2)− 8
5

[3, 5, 7, 10], which has five admissible representations with the following highest weights:

Φ0 =

[
−8

5
, 0

]
, Φ1 =

[
−6

5
,−2

5

]
, Φ2 =

[
−4

5
,−4

5

]
,

Φ3 =

[
−2

5
,−6

5

]
, Φ4 =

[
0,−8

5

]
,

(6.18)
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where Φ0 is the highest weight for the vacuum module. The characters of these repre-

sentations can be worked out using the Kac-Wakimoto formula [27], which is a special

case of the Kazhdan-Lusztig formula [64] (see also [17] for expressions in terms of

generalized theta functions):

χ0(q, z) =

∑∞
m=0(−1)mz2m+1−z−(2m+1)

z−z−1 q
5m(m+1)

2∏∞
n=1(1− qn)(1− z2qn)(1− z−2qn)

,

χ1(q, z) =
1 +

∑∞
m=1(−1)m(z−2mq

m(5m−3)
2 + z2mq

m(5m+3)
2 )

(1− z−2)
∏∞

n=1(1− qn)(1− z2qn)(1− z−2qn)
,

χ2(q, z) =
1 +

∑∞
m=1(−1)m(z−2mq

m(5m−1)
2 + z2mq

m(5m+1)
2 )

(1− z−2)
∏∞

n=1(1− qn)(1− z2qn)(1− z−2qn)
,

χ3(q, z) =
1 +

∑∞
m=1(−1)m(z2mq

m(5m−1)
2 + z−2mq

m(5m+1)
2 )

(1− z−2)
∏∞

n=1(1− qn)(1− z2qn)(1− z−2qn)
,

χ4(q, z) =
1 +

∑∞
m=1(−1)m(z2mq

m(5m−3)
2 + z−2mq

m(5m+3)
2 )

(1− z−2)
∏∞

n=1(1− qn)(1− z2qn)(1− z−2qn)
.

(6.19)

The S matrix for these five admissible representations, in the order (6.18), is [17]:

S =
1√
5


1 −1 1 −1 1

−1 −(−1)3/5 (−1)1/5 (−1)4/5 −(−1)2/5

1 (−1)1/5 (−1)2/5 (−1)3/5 (−1)4/5

−1 (−1)4/5 (−1)3/5 (−1)2/5 (−1)1/5

1 −(−1)2/5 (−1)4/5 (−1)1/5 −(−1)3/5

 . (6.20)

Working out the conjugation matrix C = S2 it’s clear that Φ1 and Φ4 are conjugate to

each other, Φ2 and Φ3 are conjugate to each other. Using the Verlinde formula [16] the

modular fusion rules for ŝl(2)− 8
5

are given by:

[Φ1]× [Φ1] = [Φ2], [Φ1]× [Φ2] = [Φ3], [Φ1]× [Φ3] = [Φ4],

[Φ1]× [Φ4] = −[Φ0], [Φ2]× [Φ2] = [Φ4], [Φ2]× [Φ3] = −[Φ0],

[Φ2]× [Φ4] = −[Φ1], [Φ3]× [Φ3] = −[Φ1], [Φ3]× [Φ4] = −[Φ2],

[Φ4]× [Φ4] = −[Φ3].

(6.21)

As we will see shortly, multiplications in the deformed Verlinde-like algebra are again

given by multiplying the −1 coefficients in the original modular fusion rules by a factor

of z2.
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The line defect Schur indices for defect generators of type A, B, C and D admit

the following character expansions:

IA(q, z) = q−1/2
(
χ0(q, z)− χ1(q, z) + z−2χ4(q, z)

)
,

IB(q, z) = q−1z−1
(
χ2(q, z)− χ3(q, z)

)
,

IC(q, z) = q−1/2z−1
(
− χ1(q, z) + χ2(q, z)− χ3(q, z) + χ4(q, z)

)
,

ID(q, z) = χ0(q, z)− q−1
(
χ1(q, z)− χ2(q, z) + z−2χ3(q, z)− z−2χ4(q, z)

)
.

(6.22)

Now we again take the q → 1 limit while keeping z general, giving the map

I
f−→ [Φ0],

Ai
f−→ [A] = [Φ0]− [Φ1] + z−2[Φ4],

Bi
f−→ [B] = z−1([Φ2]− [Φ3]),

Ci
f−→ [C] = z−1(−[Φ1] + [Φ2]− [Φ3] + [Φ4]),

Di
f−→ [D] = [Φ0]− [Φ1] + [Φ2]− z−2[Φ3] + z−2[Φ4].

(6.23)

This map is believed to be a homomorphism f : L → Vz, when we define the deformed

Verlinde-like algebra Vz by the following z-deformed modular fusion rules:

[Φ1]× [Φ1] = [Φ2], [Φ1]× [Φ2] = [Φ3], [Φ1]× [Φ3] = [Φ4],

[Φ1]× [Φ4] = −z2[Φ0], [Φ2]× [Φ2] = [Φ4], [Φ2]× [Φ3] = −z2[Φ0],

[Φ2]× [Φ4] = −z2[Φ1], [Φ3]× [Φ3] = −z2[Φ1], [Φ3]× [Φ4] = −z2[Φ2],

[Φ4]× [Φ4] = −z2[Φ3].

(6.24)

To check the homomorphism property we consider Schur indices with insertion of two

half line defects, which can also be expanded in terms of characters of admissible

representations. After setting q → 1 the expansion coefficients do not depend on the

i-index anymore:

AiAj
f−→ 3[Φ0]− 2[Φ1] + [Φ2]− z−2[Φ3] + 2z−2[Φ4],

AiBj
f−→ z−1(−[Φ1] + 2[Φ2]− 2[Φ3] + [Φ4]),

AiCj
f−→ (z + z−1)[Φ0]− 2z−1([Φ1]− [Φ4]) + 3z−1([Φ2]− [Φ3]),

AiDj
f−→ 3[Φ0]− 3[Φ1] + (2 + z−2)[Φ2]− (1 + 2z−2)[Φ3] + 3z−2[Φ4],

BiBj
f−→ 2[Φ0]− [Φ1] + z−2[Φ4],

BiCj
f−→ 2[Φ0]− 2[Φ1] + [Φ2]− z−2[Φ3] + 2z−2[Φ4],
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BiDj
f−→ (z + z−1)[Φ0] + 2z−1(−[Φ1] + [Φ2]− [Φ3] + [Φ4]),

CiCj
f−→ 4[Φ0]− 3[Φ1] + (2 + z−2)[Φ2]− (1 + 2z−2)[Φ3] + 3z−2[Φ4],

CiDj
f−→ 2(z + z−1)[Φ0]− (z + 3z−1)[Φ1] + 4z−1([Φ2]− [Φ3]) + (3z−1 + z−3)[Φ4],

DiDj
f−→ 5[Φ0]− (4 + z−2)[Φ1] + (3 + 2z−2)[Φ2]− (2 + 3z−2)[Φ3] + (1 + 4z−2)[Φ4].

f is a homomorphism if and only if the z-deformed fusion rules are as defined in (6.24).

The fusion matrices for non-vacuum modules are given as follows:

NΦ1 =


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

−z2 0 0 0 0

 , NΦ2 =


0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

−z2 0 0 0 0

0 −z2 0 0 0

 ,

NΦ3 =


0 0 0 1 0

0 0 0 0 1

−z2 0 0 0 0

0 −z2 0 0 0

0 0 −z2 0 0

 , NΦ4 =


0 0 0 0 1

−z2 0 0 0 0

0 −z2 0 0 0

0 0 −z2 0 0

0 0 0 −z2 0

 .

(6.25)

For generic z these four matrices are simultaneously diagonalizable with the following

eigenvalues:

eigenspace λΦ1 λΦ2 λΦ3 λΦ4

1 −z2/5 z4/5 −z6/5 z8/5

2 (−1)1/5z2/5 (−1)2/5z4/5 (−1)3/5z6/5 (−1)4/5z8/5

3 −(−1)2/5z2/5 (−z)4/5 (−1)1/5z6/5 −(−1)3/5z8/5

4 (−1)3/5z2/5 −(−1)1/5z4/5 −(−1)4/5z6/5 (−1)2/5z8/5

5 −(−1)4/5z2/5 −(−1)3/5z4/5 −(−1)2/5z6/5 −(−1)1/5z8/5

The classical monodromy action in this chamber can be worked out as a composition

of flips, as in Figure 21:

Xγ1 →
1 + Xγ5 + Xγ3Xγ5 + C

Xγ2Xγ3Xγ4
,

Xγ2 →
Xγ1Xγ2Xγ3Xγ4(

1 + Xγ2(1 + Xγ3 + Xγ3Xγ4)
)(

1 + Xγ5 + Xγ3Xγ5 + (1 + Xγ1)C
) ,

Xγ3 →
(
1 + (1 + Xγ1)Xγ2(1 + Xγ3)

)
(1 + Xγ5 + Xγ3Xγ5 + C)

Xγ1Xγ2Xγ3(1 + Xγ3)Xγ4Xγ5
,
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Xγ4 →
1 + Xγ5 + Xγ3Xγ5 + (1 + Xγ1)C

Xγ3
,

Xγ5 →
Xγ3Xγ4Xγ5

1 + Xγ5 + Xγ3Xγ5 + (1 + Xγ1)C
,

where

C = Xγ2(1 + Xγ3)
(
1 + Xγ5(1 + Xγ3 + Xγ3Xγ4)

)
.

For generic fixed z 6= 0, there are exactly five fixed points, matching the number of

admissible representations of ŝl(2)− 8
5
. Concretely, at the fixed locus Xγ3 satisfies the

following quintic equation:

z6X 5
γ3
− 5z4X 3

γ3
− 10z4X 2

γ3
− 5z4Xγ3 − (z4 + z2 + 1) = 0, (6.26)

and Xγ1 ,Xγ2 ,Xγ′ are all determined by Xγ3 and z (by complicated algebraic expressions

which we will not present here.) As in previous examples, the values of line defect vevs

at the fixed points do not depend on the index i.

The Galois group of the quintic (6.26) is solvable according to sage, so in principle

one can give a solution in radicals; we have not carried this out, however. Thus, here

we cannot give a closed form for the values of the Xγ at the fixed points. Moreover, we

also have the same problem as in §6.1 above: we do not know a priori how to match the

five fixed points and the five primaries. Nevertheless we numerically sampled various

values of z and confirmed that, for each z, there does exist a matching between fixed

points and primaries, such that the corresponding h makes the diagram commute.

7 Verlinde algebra from Fixed Points Analysis

Given the relations that we have discussed between the three algebras, one might

ask whether we could say something about the Verlinde algebra through values of

generating functions at the fixed points30. The answer is that we can not determine

Verlinde algebra from fixed points analysis alone, but we do obtain useful information

about Verlinde algebra31 and expansion of line defect Schur index in terms of characters.

First we would like to stress that, in principal one could obtain the (deformed)

Verlinde algebra through computing Schur index with one half line and two half lines

inserted and studying their images under the homomorphism f . In fact this is practi-

cally how we found the deformed Verlinde algebra in the D3 and D5 cases. However,

in practice (at least for us) character expansions of line defect Schur index (especially

30We thank Shu-Heng Shao for mentioning this interesting perspective.
31More precisely we mean Verlinde-like algebra of the set of highest weight modules that correspond

to the U(1)r fixed points, from direct application of the Verlinde formula.
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Figure 21: Monodromy action as a sequence of flips in the (A1, D5) Argyres-Douglas

theory.

Schur index with more than one line defect inserted) are not very easy to obtain. It

would be nice if there is some way to simplify this procedure.

To begin with, suppose that we already know the image of [Φα] under the iso-

morphism h, then the modular fusion rules among them are very easy to obtain since

the corresponding multiplication in O(F ) is given directly by pointwise multiplication.

Concretely, suppose that

[Φα]
h−→ φα := (λ1

α, . . . , λ
n
α),

then by expanding e.g.

φαφβ =
∑
γ

cγαβφγ,

the modular fusion coefficients are given by cγαβ
32. Now how do we determine φα? Since

32Here to get the fusion coefficients we don’t need to “order” the fixed points. We don’t need to
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we know the values of FLαi at the U(1)r fixed points, if in addition we also know the

image of Lαi under f , then φα is given by taking the inverse of the linear relations. So

we still need to work out the character expansions for single line defect Schur index.

But this already saves the effort of working out the character expansions of two line

defect Schur index.

Now suppose that the only data given are generating functions of line defect gener-

ators and their values at the U(1)r fixed points, what “constraints” could we possibly

put on the (deformed) Verlinde algebra? We illustrate this by looking at two simplest

examples A2 and D3 Argyres-Douglas theories. Of course the Verlinde algebra in these

cases were already known for a long time (see [17] and references therein), the hope is

that this might shed light on unknown Verlinde algebras of certain 2d chiral algebras.

In A2 case there are two fixed points, the values of FLi don’t depend on i at the

fixed points so we denote them as FL. Over the fixed points

F 2
L = I + FL. (7.1)

This equation is understood in the context of values of line defects at fixed points. This

could be obtained either by direct computation or through the relation

LiLi+2 = 1 + q
1
2Li+1. (7.2)

As discussed in §1.9 in (A1, A2N) theories the vev of line defect generators themselves

realize fusion rules over U(1)r fixed points. In particular (7.1) is the non-trivial fusion

rule of the (2, 5) minimal model. However this is a special phenomenon only in (A1, A2N)

theories. We would like to rediscover fusion rules in the basis of [Φα] instead for the

purpose of generalization.

We make the following ansatz for the image of Li under f :

Li
f−→ [L] := a[Φ0] + b[Φ1], (7.3)

where Φ0 is the vacuum. We also make an ansatz for the fusion rule:

[Φ1]× [Φ1] = c[Φ0] + d[Φ1].

(7.1) would imply

[LL] = [L]× [L] = (a+ 1)[Φ0] + b[Φ1], (7.4)

by comparing coefficients we get the following equations for a, b, c, d:

a2 + b2c = a+ 1, 2ab+ b2d = b. (7.5)

know the exact correspondence between U(1)r fixed points and primaries.
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Now, a and b have to be integers. This was the observation made in [2]. We do not have

an explanation but it is true in all the examples that we considered in this paper so we

use this as an assumption. The fusion coefficients c and d have to be 0 or 133. Moreover

given each candidate fusion rule one could check whether the solution is consistent with

eigenvalues of the Verlinde matrix. These constraints pin down the only possible fusion

rule to be the desired one in (2, 5) minimal model namely c = 1 and d = 1. There are

two solutions for a and b:

(a, b) = (1,−1) or (a, b) = (0, 1). (7.6)

The wrong answer could be easily ruled out by computing the single line defect Schur

index. In more complicated cases the finite number of solutions of (a, b) also offers

ansatz for the character expansion of single line defect Schur index.

In the D3 case we have more constraints due to the z-deformed Verlinde algebra.

We take an assumption that the z-deformed Verlinde algebra always replaces the −1

coefficient by −z2.34 In that case by taking z = i all the fusion coefficients are either 0

or 1. So this reduces to a similar case as in A2. When z = i,

[AB] = 2[A], [AA] = [Φ0] + [B], [BB] = 2[Φ0] + [B]. (7.7)

Again this was obtained either by directly looking at values of F (L) at fixed points

or through relations between generating functions. Similarly by making ansatz and

comparing coefficients one could obtain the consistent fusion rules. Note that in this

case there is one more constraint coming into play, namely the fusion matrices NΦ1

and NΦ2 have to be simultaneously diagonalizable. The only fusion rules passing these

constraints are

[Φ1]× [Φ1] = [Φ2],

[Φ1]× [Φ2] = [Φ0],

[Φ2]× [Φ2] = [Φ1].

(7.8)

Note that here we can not physically distinguish [Φ1] and [Φ2], e.g. we can not compute

their conformal weights etc in our setup. They only appear in our ansatz (for z = i) for

[A] and [B]. This is the reason why we can’t actually pin down the fusion rules. Now

in the deformed fusion rules each +1 coefficient in (7.8) could be either +1 or −z2. We

again make ansatz for [A] and [B], only now the coefficients are monomials in z with

33We will discuss how this works for modular fusion rules with apparent −1 coefficients momentarily.
34We conjecture this is true at least for (A1, D2N+1) Argyres-Douglas theories. For other theories

one could first work out simple examples to find out patterns of deformed modular fusion rules.
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integer coefficients. Again this is an assumption that we make through observations of

known examples. For general z the following holds:

[AB] = (z + z−1)[Φ0] + 2[A],

[AA] = [Φ0] + [B],

[BB] = 2[Φ0] + (z + z−1)[A] + [B].

(7.9)

Imposing constraints and comparing coefficients gives us two possibilities. One of them,

which is also the correct one, is

[Φ1]× [Φ1] = [Φ2],

[Φ1]× [Φ2] = −z2[Φ0],

[Φ2]× [Φ2] = −z2[Φ1],

with the following images of Ai and Bi under f :

[A] =
1

z
([Φ2]− [Φ1]),

[B] = [Φ0]− [Φ1] + z−2[Φ2].

The other solution is simply given by swapping [Φ1] with [Φ2]. Note that this is rea-

sonable since we can not physically distinguish [Φ1] and [Φ2]. So this is the best we

could do with the available ansatz. In reality given access to characters of admissible

representations it would be easy to rule out the wrong answer.
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